Transfer learning for plant disease detection model based on low-altitude UAV remote sensing

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Precision Agriculture Pub Date : 2024-12-19 DOI:10.1007/s11119-024-10217-x
Zhenyu Huang, Xiulin Bai, Mostafa Gouda, Hui Hu, Ningyuan Yang, Yong He, Xuping Feng
{"title":"Transfer learning for plant disease detection model based on low-altitude UAV remote sensing","authors":"Zhenyu Huang, Xiulin Bai, Mostafa Gouda, Hui Hu, Ningyuan Yang, Yong He, Xuping Feng","doi":"10.1007/s11119-024-10217-x","DOIUrl":null,"url":null,"abstract":"<p>The global attention to the utilization of unmanned aerial vehicle remote sensing drones in crop disease-wide detection has led to the urgent need to find an adapted model for different environmental conditions. Therefore, the current study has focused on spatiotemporal usage of different multispectral cameras in acquiring spectral reflectance models of in-field rice bacterial blight stresses. Where, long short-term memory (LSTM) model was compared with the other models in transfer learning strategy for assessing the blight stress severity. The results revealed that by extracting 30% of the data from the target domain and transferring it to the source domain, the adaptability of the model across different sites was effectively enhanced. Besides, LSTM showed high tuning transfer efficiency that demonstrated optimal predictive performance and the shortest training time in transfer tasks. Its coefficient of the prediction set was 0.82, and its residual prediction deviation has reached 2.26. In practice, LSTM enabled the acquisition of reliable prediction results at a minimal sample collection cost while circumventing feature reduction resulting from inter-domain data alignment. When the transfer ratio reached 20%, the coefficient of determination of the prediction set reached 0.71, and the residual prediction deviation reached 1.79. The novelty of this study came from the transfer learning efficiency in improving the model’s application capabilities across the different sites, environment, and unmanned aerial vehicle in farmland disease detection.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"22 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10217-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The global attention to the utilization of unmanned aerial vehicle remote sensing drones in crop disease-wide detection has led to the urgent need to find an adapted model for different environmental conditions. Therefore, the current study has focused on spatiotemporal usage of different multispectral cameras in acquiring spectral reflectance models of in-field rice bacterial blight stresses. Where, long short-term memory (LSTM) model was compared with the other models in transfer learning strategy for assessing the blight stress severity. The results revealed that by extracting 30% of the data from the target domain and transferring it to the source domain, the adaptability of the model across different sites was effectively enhanced. Besides, LSTM showed high tuning transfer efficiency that demonstrated optimal predictive performance and the shortest training time in transfer tasks. Its coefficient of the prediction set was 0.82, and its residual prediction deviation has reached 2.26. In practice, LSTM enabled the acquisition of reliable prediction results at a minimal sample collection cost while circumventing feature reduction resulting from inter-domain data alignment. When the transfer ratio reached 20%, the coefficient of determination of the prediction set reached 0.71, and the residual prediction deviation reached 1.79. The novelty of this study came from the transfer learning efficiency in improving the model’s application capabilities across the different sites, environment, and unmanned aerial vehicle in farmland disease detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
期刊最新文献
A bio-inspired optimization algorithm with disjoint sets to delineate orthogonal site-specific management zones Transfer learning for plant disease detection model based on low-altitude UAV remote sensing Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen variability in almond orchards: modeling and validation with airborne hyperspectral imagery Spatial and temporal variability of soil apparent electrical conductivity On-farm experimentation: assessing the effect of combine ground speed on grain yield monitor data estimates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1