Hydrocarbon metabolism and petroleum seepage as ecological and evolutionary drivers for Cycloclasticus

Eleanor C Arrington, Jonathan Tarn, Veronika Kivenson, Brook L Nunn, Rachel M Liu, Blair G Paul, David L Valentine
{"title":"Hydrocarbon metabolism and petroleum seepage as ecological and evolutionary drivers for Cycloclasticus","authors":"Eleanor C Arrington, Jonathan Tarn, Veronika Kivenson, Brook L Nunn, Rachel M Liu, Blair G Paul, David L Valentine","doi":"10.1093/ismejo/wrae247","DOIUrl":null,"url":null,"abstract":"Aqueous-soluble hydrocarbons dissolve into the ocean’s interior and structure deep-sea microbial populations influenced by natural oil seeps and spills. n-Pentane is a seawater-soluble, volatile compound abundant in petroleum products and reservoirs and will partially partition to the deep-water column following release from the seafloor. In this study, we explore the ecology and niche partitioning of two free-living Cycloclasticus strains recovered from seawater incubations with n-pentane and distinguish them as an open ocean variant and a seep-proximal variant, each with distinct capabilities for hydrocarbon catabolism. Comparative metagenomic analysis indicates the variant more frequently observed further from natural seeps encodes more general pathways for hydrocarbon consumption, including short-chain alkanes, aromatics, and long-chain alkanes, and also possesses redox versatility in the form of respiratory nitrate reduction and thiosulfate oxidation; in contrast, the seep variant specializes in short-chain alkanes and relies strictly on oxygen as the terminal electron acceptor. Both variants observed in our work were dominant ecotypes of Cycloclasticus observed during the Deepwater Horizon disaster, a conclusion supported by 16S rRNA gene analysis and read-recruitment of sequences collected from the submerged oil plume during active flow. A comparative genomic analysis of Cycloclasticus across various ecosystems suggests distinct strategies for hydrocarbon transformations among each clade. Our findings suggest Cycloclasticus is a versatile and opportunistic consumer of hydrocarbons and may have a greater role in the cycling of sulfur and nitrogen, thus contributing broad ecological impact to various ecosystems globally.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous-soluble hydrocarbons dissolve into the ocean’s interior and structure deep-sea microbial populations influenced by natural oil seeps and spills. n-Pentane is a seawater-soluble, volatile compound abundant in petroleum products and reservoirs and will partially partition to the deep-water column following release from the seafloor. In this study, we explore the ecology and niche partitioning of two free-living Cycloclasticus strains recovered from seawater incubations with n-pentane and distinguish them as an open ocean variant and a seep-proximal variant, each with distinct capabilities for hydrocarbon catabolism. Comparative metagenomic analysis indicates the variant more frequently observed further from natural seeps encodes more general pathways for hydrocarbon consumption, including short-chain alkanes, aromatics, and long-chain alkanes, and also possesses redox versatility in the form of respiratory nitrate reduction and thiosulfate oxidation; in contrast, the seep variant specializes in short-chain alkanes and relies strictly on oxygen as the terminal electron acceptor. Both variants observed in our work were dominant ecotypes of Cycloclasticus observed during the Deepwater Horizon disaster, a conclusion supported by 16S rRNA gene analysis and read-recruitment of sequences collected from the submerged oil plume during active flow. A comparative genomic analysis of Cycloclasticus across various ecosystems suggests distinct strategies for hydrocarbon transformations among each clade. Our findings suggest Cycloclasticus is a versatile and opportunistic consumer of hydrocarbons and may have a greater role in the cycling of sulfur and nitrogen, thus contributing broad ecological impact to various ecosystems globally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烃代谢和石油渗流:环裂生的生态和进化驱动因素
水溶性碳氢化合物溶解到海洋内部,并构成受天然石油渗漏和泄漏影响的深海微生物种群。正戊烷是一种可溶于海水的挥发性化合物,大量存在于石油产品和储层中,从海底释放后会部分分解到深水柱中。在这项研究中,我们探索了两种自由生活的环裂菌菌株的生态学和生态位分配,这些菌株从海水中与正戊烷孵卵中恢复,并将它们区分为开放海洋变体和近渗漏变体,每种变体都具有不同的碳氢化合物分解代谢能力。宏基因组比较分析表明,该变异更频繁地从自然渗漏中观察到,编码了更一般的碳氢化合物消耗途径,包括短链烷烃、芳烃和长链烷烃,并且还具有以呼吸硝酸还原和硫代硫酸盐氧化形式的氧化还原多功能性;相比之下,渗漏变体专门针对短链烷烃,并严格依赖于氧作为终端电子受体。在我们的研究中观察到的这两种变体都是深水地平线灾难期间观察到的环状虫的主要生态型,这一结论得到了16S rRNA基因分析和活跃流期间从淹没油柱中收集的序列的读取招募的支持。在不同的生态系统中对环裂蝗的比较基因组分析表明,每个进化枝的碳氢化合物转化策略不同。我们的研究结果表明,环裂藻是一种多用途和机会性的碳氢化合物消费者,可能在硫和氮的循环中发挥更大的作用,从而对全球各种生态系统产生广泛的生态影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic and species rearrangements in microbial consortia impact biodegradation potential Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. Tolerance to land-use changes through natural modulations of the plant microbiome Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments Dispersal promotes stability and persistence of exploited yeast mutualisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1