Xin Zhang, Sisi Ma, Syeda Iffat Naz, Erik J. Soderblom, Constantin Aliferis, Virginia Byers Kraus
{"title":"Plasma extracellular vesicles carry immune system-related peptides that predict human longevity","authors":"Xin Zhang, Sisi Ma, Syeda Iffat Naz, Erik J. Soderblom, Constantin Aliferis, Virginia Byers Kraus","doi":"10.1007/s11357-024-01454-z","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72–80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (<i>n</i> = 32) and validation (<i>n</i> = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC<sup>+</sup>, CD9<sup>+</sup>, and CD31<sup>+</sup>) and muscle cells (MCAD<sup>+</sup> and RyR2<sup>+</sup>). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91–1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01454-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72–80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (n = 32) and validation (n = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC+, CD9+, and CD31+) and muscle cells (MCAD+ and RyR2+). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91–1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.