Sinead Greally, Mukesh Kumar, Christoph Schlaffner, Hanne van der Heijden, Elisabeth S. Lawton, Deeptarup Biswas, Sabina Berretta, Hanno Steen, Judith A. Steen
{"title":"Dementia with lewy bodies patients with high tau levels display unique proteome profiles","authors":"Sinead Greally, Mukesh Kumar, Christoph Schlaffner, Hanne van der Heijden, Elisabeth S. Lawton, Deeptarup Biswas, Sabina Berretta, Hanno Steen, Judith A. Steen","doi":"10.1186/s13024-024-00782-0","DOIUrl":null,"url":null,"abstract":"Clinical studies have long observed that neurodegenerative disorders display a range of symptoms and pathological features and, in some cases, overlap, suggesting that these diseases exist on a spectrum. Dementia with Lewy Bodies (DLB), a synucleinopathy, is a prominent example, where symptomatic similarities with tauopathy, Alzheimer’s disease, are observed. Although tau pathology has been observed in DLB, the interplay between tau and α-synuclein is poorly understood at a molecular level. Quantitative mass spectrometry analysis was used to measure protein abundance in the insoluble fraction from cortical brain tissue from pathologically diagnosed DLB subjects (n = 30) and age-matched controls (n = 29). Using tau abundance, we stratified the DLB subjects into two subgroups termed DLBTau+ (higher abundance) and DLBTau− (lower abundance). We conducted proteomic analysis to characterize and compare the cortical proteome of DLB subjects exhibiting elevated tau, as well as the molecular modifications of tau and α-synuclein to explore the dynamic between tau and α-synuclein pathology in these patients. Proteomic analyses revealed distinct global protein dysregulations in DLBTau+ and DLBTau− subjects when compared to controls. Notably, DLBTau+ patients exhibited increased levels of tau, along with ubiquitin, and APOE, indicative of cortical proteome alterations associated with elevated tau. Comparing DLBTau+ and DLBTau− groups, we observed significant upregulation of cytokine signaling and metabolic pathways in DLBTau− patients, while DLBTau+ subjects showed increases in protein ubiquitination processes and regulation of vesicle-mediated transport. Additionally, we examined the post-translational modification patterns of tau and α-synuclein. Our analysis revealed distinct phosphorylation and ubiquitination sites on α-synuclein between groups. Moreover, we observed increased modifications on tau specifically within the DLBTau+ subgroup. This molecular-level data supports the idea of neurodegenerative disease as a continuum of diseases with distinct PTM profiles DLBTau+ and DLBTau− patients in comparison to AD. These findings further emphasize the importance of identifying specific and tailored therapeutic approaches targeting the involved proteopathies in the neurodegenerative disease spectrum.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"22 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-024-00782-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical studies have long observed that neurodegenerative disorders display a range of symptoms and pathological features and, in some cases, overlap, suggesting that these diseases exist on a spectrum. Dementia with Lewy Bodies (DLB), a synucleinopathy, is a prominent example, where symptomatic similarities with tauopathy, Alzheimer’s disease, are observed. Although tau pathology has been observed in DLB, the interplay between tau and α-synuclein is poorly understood at a molecular level. Quantitative mass spectrometry analysis was used to measure protein abundance in the insoluble fraction from cortical brain tissue from pathologically diagnosed DLB subjects (n = 30) and age-matched controls (n = 29). Using tau abundance, we stratified the DLB subjects into two subgroups termed DLBTau+ (higher abundance) and DLBTau− (lower abundance). We conducted proteomic analysis to characterize and compare the cortical proteome of DLB subjects exhibiting elevated tau, as well as the molecular modifications of tau and α-synuclein to explore the dynamic between tau and α-synuclein pathology in these patients. Proteomic analyses revealed distinct global protein dysregulations in DLBTau+ and DLBTau− subjects when compared to controls. Notably, DLBTau+ patients exhibited increased levels of tau, along with ubiquitin, and APOE, indicative of cortical proteome alterations associated with elevated tau. Comparing DLBTau+ and DLBTau− groups, we observed significant upregulation of cytokine signaling and metabolic pathways in DLBTau− patients, while DLBTau+ subjects showed increases in protein ubiquitination processes and regulation of vesicle-mediated transport. Additionally, we examined the post-translational modification patterns of tau and α-synuclein. Our analysis revealed distinct phosphorylation and ubiquitination sites on α-synuclein between groups. Moreover, we observed increased modifications on tau specifically within the DLBTau+ subgroup. This molecular-level data supports the idea of neurodegenerative disease as a continuum of diseases with distinct PTM profiles DLBTau+ and DLBTau− patients in comparison to AD. These findings further emphasize the importance of identifying specific and tailored therapeutic approaches targeting the involved proteopathies in the neurodegenerative disease spectrum.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.