Shengqiang Zhou, Tianliang Lu, Lipeng Zhou, Xiaomei Yang
{"title":"Au@Snβ zeolite as stable and active catalyst for the conversion of glycerol to methyl lactate","authors":"Shengqiang Zhou, Tianliang Lu, Lipeng Zhou, Xiaomei Yang","doi":"10.1016/j.jcat.2024.115913","DOIUrl":null,"url":null,"abstract":"Au/Sn-zeolite catalysts showed high activity for selective conversion of glycerol to methyl lactate, but suffered from poor stability under the reaction conditions in our previous report (ACS Catal. 2017, 7, 7274). Encapsulation of Au nanoparticles within zeolite is a promising strategy to enhance their stability in catalytic reaction. Herein, one-pot synthesis of Au@Snβ was achieved by a mercaptosilane-assisted hydrothermal synthesis method. The protocol involves crystallization of Snβ synthesis gels around coordinated Au precursors, resulting in Snβ framework constraining Au coordination complexes. The confinement of small (∼2.89 nm) and uniform Au particles within Snβ was achieved. The bifunctional catalyst composed of oxidative sites (Au) and Lewis acid sites (Sn) gave 77.3 % methyl lactate (MLA) yield from the base-free selective conversion of glycerol (GLY). The TOF value of Au@Snβ was higher than that of Au/Sn-zeolite in our previous report. Moreover, the special structure protects Au nanoparticles from sintering or agglomeration and improves the stability and recyclability in selective oxidation of GLY to MLA.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"18 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2024.115913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Au/Sn-zeolite catalysts showed high activity for selective conversion of glycerol to methyl lactate, but suffered from poor stability under the reaction conditions in our previous report (ACS Catal. 2017, 7, 7274). Encapsulation of Au nanoparticles within zeolite is a promising strategy to enhance their stability in catalytic reaction. Herein, one-pot synthesis of Au@Snβ was achieved by a mercaptosilane-assisted hydrothermal synthesis method. The protocol involves crystallization of Snβ synthesis gels around coordinated Au precursors, resulting in Snβ framework constraining Au coordination complexes. The confinement of small (∼2.89 nm) and uniform Au particles within Snβ was achieved. The bifunctional catalyst composed of oxidative sites (Au) and Lewis acid sites (Sn) gave 77.3 % methyl lactate (MLA) yield from the base-free selective conversion of glycerol (GLY). The TOF value of Au@Snβ was higher than that of Au/Sn-zeolite in our previous report. Moreover, the special structure protects Au nanoparticles from sintering or agglomeration and improves the stability and recyclability in selective oxidation of GLY to MLA.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.