A frameshift mutation in JAZ10 resolves the growth versus defense dilemma in rice

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-12-18 DOI:10.1073/pnas.2413564121
Lei-Lei Li, Yujie Xiao, Baohui Wang, Yunqi Zhuang, Yumeng Chen, Jing Lu, Yonggen Lou, Ran Li
{"title":"A frameshift mutation in JAZ10 resolves the growth versus defense dilemma in rice","authors":"Lei-Lei Li, Yujie Xiao, Baohui Wang, Yunqi Zhuang, Yumeng Chen, Jing Lu, Yonggen Lou, Ran Li","doi":"10.1073/pnas.2413564121","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas9 genome editing systems have revolutionized plant gene functional studies by enabling the targeted introduction of insertion-deletions (INDELs) via the nonhomologous end-joining (NHEJ) pathway. Frameshift-inducing INDELs can introduce a premature termination codon and, in other instances, can lead to the appearance of new proteins. Here, we found that mutations in the rice jasmonate (JA) signaling gene <jats:italic>OsJAZ10</jats:italic> by CRISPR-Cas9-based genome editing did not affect canonical JA signaling. However, a type of mutant with an INDEL that yielded a novel frameshift protein named FJ10 ( <jats:italic> <jats:underline>F</jats:underline> rameshift mutation of <jats:underline>J</jats:underline> AZ <jats:underline>10</jats:underline> </jats:italic> ), exhibited enhanced rice growth and increased resistance to brown planthopper attacks. Overexpression of <jats:italic>FJ10</jats:italic> in wild-type plants phenocopies <jats:italic>OsJAZ10</jats:italic> frameshift mutants. Further characterization revealed that FJ10 interacts with Slender Rice 1 (OsSLR1) and F-box/Kelch 16 (OsFBK16). These interactions disrupt the function of OsSLR1 in suppressing gibberellin-mediated growth and the function of OsFBK16 in repressing lignin-mediated defense responses, respectively. Field experiments with <jats:italic>FJ10</jats:italic> -expressing plants demonstrate that this protein uncouples the growth–defense tradeoff, opening broad avenues to obtain cultivars with enhanced yield without compromised defenses.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"23 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2413564121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas9 genome editing systems have revolutionized plant gene functional studies by enabling the targeted introduction of insertion-deletions (INDELs) via the nonhomologous end-joining (NHEJ) pathway. Frameshift-inducing INDELs can introduce a premature termination codon and, in other instances, can lead to the appearance of new proteins. Here, we found that mutations in the rice jasmonate (JA) signaling gene OsJAZ10 by CRISPR-Cas9-based genome editing did not affect canonical JA signaling. However, a type of mutant with an INDEL that yielded a novel frameshift protein named FJ10 ( F rameshift mutation of J AZ 10 ), exhibited enhanced rice growth and increased resistance to brown planthopper attacks. Overexpression of FJ10 in wild-type plants phenocopies OsJAZ10 frameshift mutants. Further characterization revealed that FJ10 interacts with Slender Rice 1 (OsSLR1) and F-box/Kelch 16 (OsFBK16). These interactions disrupt the function of OsSLR1 in suppressing gibberellin-mediated growth and the function of OsFBK16 in repressing lignin-mediated defense responses, respectively. Field experiments with FJ10 -expressing plants demonstrate that this protein uncouples the growth–defense tradeoff, opening broad avenues to obtain cultivars with enhanced yield without compromised defenses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Order of amino acid recruitment into the genetic code resolved by last universal common ancestor's protein domains. A two-step dance commits collagen to folding. Climbing the scala energiae: The cost of growing animals great and small. Correction for McCullagh et al., NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Correction for Mendoza Nava et al., Buckling-induced sound production in the aeroelastic tymbals of Yponomeuta.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1