Pijush Chakraborty, Alain Ibáñez de Opakua, Jeffrey A. Purslow, Simon A. Fromm, Debdeep Chatterjee, Milan Zachrdla, Shannon Zhuang, Sambhavi Puri, Benjamin Wolozin, Markus Zweckstetter
{"title":"GSK3β phosphorylation catalyzes the aggregation of tau into Alzheimer's disease-like filaments","authors":"Pijush Chakraborty, Alain Ibáñez de Opakua, Jeffrey A. Purslow, Simon A. Fromm, Debdeep Chatterjee, Milan Zachrdla, Shannon Zhuang, Sambhavi Puri, Benjamin Wolozin, Markus Zweckstetter","doi":"10.1073/pnas.2414176121","DOIUrl":null,"url":null,"abstract":"The pathological deposition of proteins is a hallmark of several devastating neurodegenerative diseases. These pathological deposits comprise aggregates of proteins that adopt distinct structures named strains. However, the molecular factors responsible for the formation of distinct aggregate strains are unknown. Here, we show that the serine/threonine kinase GSK3β catalyzes the aggregation of the protein tau into Alzheimer’s disease (AD)-like filaments. We demonstrate that phosphorylation by GSK3β, but not by several other kinases, promotes the aggregation of full-length tau as well as enhances phase separation into gel-like condensate structures. Cryoelectron microscopy further reveals that the fibrils formed by GSK3β-phosphorylated tau adopt a fold comparable to that of paired helical filaments isolated from the brains of AD patients. Our results elucidate the intricate relationship between posttranslational modification and the formation of tau strains in neurodegenerative diseases.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"12 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414176121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pathological deposition of proteins is a hallmark of several devastating neurodegenerative diseases. These pathological deposits comprise aggregates of proteins that adopt distinct structures named strains. However, the molecular factors responsible for the formation of distinct aggregate strains are unknown. Here, we show that the serine/threonine kinase GSK3β catalyzes the aggregation of the protein tau into Alzheimer’s disease (AD)-like filaments. We demonstrate that phosphorylation by GSK3β, but not by several other kinases, promotes the aggregation of full-length tau as well as enhances phase separation into gel-like condensate structures. Cryoelectron microscopy further reveals that the fibrils formed by GSK3β-phosphorylated tau adopt a fold comparable to that of paired helical filaments isolated from the brains of AD patients. Our results elucidate the intricate relationship between posttranslational modification and the formation of tau strains in neurodegenerative diseases.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.