Krassimira Garbett, Baris Tosun, Jaybree M. Lopez, Cassandra M. Smith, Kelly Honkanen, Richard C. Sando
{"title":"Synaptic Gα12/13 signaling establishes hippocampal PV inhibitory circuits","authors":"Krassimira Garbett, Baris Tosun, Jaybree M. Lopez, Cassandra M. Smith, Kelly Honkanen, Richard C. Sando","doi":"10.1073/pnas.2407828121","DOIUrl":null,"url":null,"abstract":"Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions. Impairment of the Gα12/13 pathway in postnatal hippocampal neurons diminishes inhibitory inputs without altering neuronal morphology or excitatory transmission. Gα12/13 signaling in hippocampal CA1 neurons in vivo selectively regulates PV interneuron synaptic connectivity, supporting an inhibitory synapse subtype-specific function of this pathway. Our studies establish Gα12/13 as a signaling node that shapes inhibitory hippocampal circuitry.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"23 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2407828121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions. Impairment of the Gα12/13 pathway in postnatal hippocampal neurons diminishes inhibitory inputs without altering neuronal morphology or excitatory transmission. Gα12/13 signaling in hippocampal CA1 neurons in vivo selectively regulates PV interneuron synaptic connectivity, supporting an inhibitory synapse subtype-specific function of this pathway. Our studies establish Gα12/13 as a signaling node that shapes inhibitory hippocampal circuitry.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.