Haihang Zeng, Mingming Jia, Xiangyu Ning, Zhaohui Xue, Rong Zhang, Chuanpeng Zhao, Yangyang Yan, Zongming Wang
{"title":"Quantitative characterization of global nighttime light: A method for measuring energy intensity based on radiant flux and SNPP-VIIRS data","authors":"Haihang Zeng, Mingming Jia, Xiangyu Ning, Zhaohui Xue, Rong Zhang, Chuanpeng Zhao, Yangyang Yan, Zongming Wang","doi":"10.1016/j.rse.2024.114576","DOIUrl":null,"url":null,"abstract":"Nighttime light (NTL) remote sensing has become an important tool to study human activities and their impact on the environment. However, accurately and quantitatively measuring NTL has remained a challenge. In this study, we propose using radiant flux as a more precise measure of NTL energy intensity, which takes into account both radiance and image pixel area. To achieve this, we develop a conversion model from radiance to radiant flux based on the SNPP-VIIRS dataset and calculate the global radiant flux map for 2022. A validation of the model was conducted in 50 representative cities worldwide, confirming its rationality and accuracy. The use of radiant flux provides a more intuitive reflection of NTL energy intensity and eliminates system error caused by variations in pixel areas. This research emphasizes the importance of using a quantitative measurement for NTL and highlights the potential for further evaluation of socio-economic parameters and ecological impacts using NTL radiant flux.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"87 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114576","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nighttime light (NTL) remote sensing has become an important tool to study human activities and their impact on the environment. However, accurately and quantitatively measuring NTL has remained a challenge. In this study, we propose using radiant flux as a more precise measure of NTL energy intensity, which takes into account both radiance and image pixel area. To achieve this, we develop a conversion model from radiance to radiant flux based on the SNPP-VIIRS dataset and calculate the global radiant flux map for 2022. A validation of the model was conducted in 50 representative cities worldwide, confirming its rationality and accuracy. The use of radiant flux provides a more intuitive reflection of NTL energy intensity and eliminates system error caused by variations in pixel areas. This research emphasizes the importance of using a quantitative measurement for NTL and highlights the potential for further evaluation of socio-economic parameters and ecological impacts using NTL radiant flux.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.