Toshimichi Yamada, Coralie Trentesaux, Jonathan M. Brunger, Yini Xiao, Adam J. Stevens, Iain Martyn, Petr Kasparek, Neha P. Shroff, Angelica Aguilar, Benoit G. Bruneau, Dario Boffelli, Ophir D. Klein, Wendell A. Lim
{"title":"Synthetic organizer cells guide development via spatial and biochemical instructions","authors":"Toshimichi Yamada, Coralie Trentesaux, Jonathan M. Brunger, Yini Xiao, Adam J. Stevens, Iain Martyn, Petr Kasparek, Neha P. Shroff, Angelica Aguilar, Benoit G. Bruneau, Dario Boffelli, Ophir D. Klein, Wendell A. Lim","doi":"10.1016/j.cell.2024.11.017","DOIUrl":null,"url":null,"abstract":"<em>In vitro</em> development relies primarily on treating progenitor cells with media-borne morphogens and thus lacks native-like spatial information. Here, we engineer morphogen-secreting organizer cells programmed to self-assemble, via cell adhesion, around mouse embryonic stem (ES) cells in defined architectures. By inducing the morphogen WNT3A and its antagonist DKK1 from organizer cells, we generated diverse morphogen gradients, varying in range and steepness. These gradients were strongly correlated with morphogenetic outcomes: the range of minimum-maximum WNT activity determined the resulting range of anterior-to-posterior (A-P) axis cell lineages. Strikingly, shallow WNT activity gradients, despite showing truncated A-P lineages, yielded higher-resolution tissue morphologies, such as a beating, chambered cardiac-like structure associated with an endothelial network. Thus, synthetic organizer cells, which integrate spatial, temporal, and biochemical information, provide a powerful way to systematically and flexibly direct the development of ES or other progenitor cells in different directions within the morphogenetic landscape.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"53 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro development relies primarily on treating progenitor cells with media-borne morphogens and thus lacks native-like spatial information. Here, we engineer morphogen-secreting organizer cells programmed to self-assemble, via cell adhesion, around mouse embryonic stem (ES) cells in defined architectures. By inducing the morphogen WNT3A and its antagonist DKK1 from organizer cells, we generated diverse morphogen gradients, varying in range and steepness. These gradients were strongly correlated with morphogenetic outcomes: the range of minimum-maximum WNT activity determined the resulting range of anterior-to-posterior (A-P) axis cell lineages. Strikingly, shallow WNT activity gradients, despite showing truncated A-P lineages, yielded higher-resolution tissue morphologies, such as a beating, chambered cardiac-like structure associated with an endothelial network. Thus, synthetic organizer cells, which integrate spatial, temporal, and biochemical information, provide a powerful way to systematically and flexibly direct the development of ES or other progenitor cells in different directions within the morphogenetic landscape.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.