Synthetic organizer cells guide development via spatial and biochemical instructions

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-12-19 DOI:10.1016/j.cell.2024.11.017
Toshimichi Yamada, Coralie Trentesaux, Jonathan M. Brunger, Yini Xiao, Adam J. Stevens, Iain Martyn, Petr Kasparek, Neha P. Shroff, Angelica Aguilar, Benoit G. Bruneau, Dario Boffelli, Ophir D. Klein, Wendell A. Lim
{"title":"Synthetic organizer cells guide development via spatial and biochemical instructions","authors":"Toshimichi Yamada, Coralie Trentesaux, Jonathan M. Brunger, Yini Xiao, Adam J. Stevens, Iain Martyn, Petr Kasparek, Neha P. Shroff, Angelica Aguilar, Benoit G. Bruneau, Dario Boffelli, Ophir D. Klein, Wendell A. Lim","doi":"10.1016/j.cell.2024.11.017","DOIUrl":null,"url":null,"abstract":"<em>In vitro</em> development relies primarily on treating progenitor cells with media-borne morphogens and thus lacks native-like spatial information. Here, we engineer morphogen-secreting organizer cells programmed to self-assemble, via cell adhesion, around mouse embryonic stem (ES) cells in defined architectures. By inducing the morphogen WNT3A and its antagonist DKK1 from organizer cells, we generated diverse morphogen gradients, varying in range and steepness. These gradients were strongly correlated with morphogenetic outcomes: the range of minimum-maximum WNT activity determined the resulting range of anterior-to-posterior (A-P) axis cell lineages. Strikingly, shallow WNT activity gradients, despite showing truncated A-P lineages, yielded higher-resolution tissue morphologies, such as a beating, chambered cardiac-like structure associated with an endothelial network. Thus, synthetic organizer cells, which integrate spatial, temporal, and biochemical information, provide a powerful way to systematically and flexibly direct the development of ES or other progenitor cells in different directions within the morphogenetic landscape.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"53 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro development relies primarily on treating progenitor cells with media-borne morphogens and thus lacks native-like spatial information. Here, we engineer morphogen-secreting organizer cells programmed to self-assemble, via cell adhesion, around mouse embryonic stem (ES) cells in defined architectures. By inducing the morphogen WNT3A and its antagonist DKK1 from organizer cells, we generated diverse morphogen gradients, varying in range and steepness. These gradients were strongly correlated with morphogenetic outcomes: the range of minimum-maximum WNT activity determined the resulting range of anterior-to-posterior (A-P) axis cell lineages. Strikingly, shallow WNT activity gradients, despite showing truncated A-P lineages, yielded higher-resolution tissue morphologies, such as a beating, chambered cardiac-like structure associated with an endothelial network. Thus, synthetic organizer cells, which integrate spatial, temporal, and biochemical information, provide a powerful way to systematically and flexibly direct the development of ES or other progenitor cells in different directions within the morphogenetic landscape.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成组织者细胞通过空间和生化指令指导发育
体外发育主要依赖于用媒介传播的形态原处理祖细胞,因此缺乏天然的空间信息。在这里,我们设计了形态分泌组织者细胞,通过细胞粘附,在小鼠胚胎干细胞周围以确定的结构自组装。通过从组织细胞中诱导形态形成因子WNT3A及其拮抗剂DKK1,我们产生了不同的形态形成梯度,其范围和陡峭程度各不相同。这些梯度与形态发生结果密切相关:最小-最大WNT活性的范围决定了前-后(A-P)轴细胞系的最终范围。引人注目的是,尽管显示截断的a - p谱系,较浅的WNT活性梯度产生了更高分辨率的组织形态,例如与内皮网络相关的跳动、腔室心脏样结构。因此,整合了空间、时间和生化信息的合成组织者细胞,为系统、灵活地指导胚胎干细胞或其他祖细胞在形态发生景观中不同方向的发育提供了强有力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Identification, structure, and agonist design of an androgen membrane receptor Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3 Ligand interaction landscape of transcription factors and essential enzymes in E. coli Comparative proteomic landscapes elucidate human preimplantation development and failure High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1