Jason J. Liu, Beatrice Borsari, Yunyang Li, Susanna X. Liu, Yuan Gao, Xin Xin, Shaoke Lou, Matthew Jensen, Diego Garrido-Martín, Terril L. Verplaetse, Garrett Ash, Jing Zhang, Matthew J. Girgenti, Walter Roberts, Mark Gerstein
{"title":"Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations","authors":"Jason J. Liu, Beatrice Borsari, Yunyang Li, Susanna X. Liu, Yuan Gao, Xin Xin, Shaoke Lou, Matthew Jensen, Diego Garrido-Martín, Terril L. Verplaetse, Garrett Ash, Jing Zhang, Matthew J. Girgenti, Walter Roberts, Mark Gerstein","doi":"10.1016/j.cell.2024.11.012","DOIUrl":null,"url":null,"abstract":"Psychiatric disorders are influenced by genetic and environmental factors. However, their study is hindered by limitations on precisely characterizing human behavior. New technologies such as wearable sensors show promise in surmounting these limitations in that they measure heterogeneous behavior in a quantitative and unbiased fashion. Here, we analyze wearable and genetic data from the Adolescent Brain Cognitive Development (ABCD) study. Leveraging >250 wearable-derived features as digital phenotypes, we show that an interpretable AI framework can objectively classify adolescents with psychiatric disorders more accurately than previously possible. To relate digital phenotypes to the underlying genetics, we show how they can be employed in univariate and multivariate genome-wide association studies (GWASs). Doing so, we identify 16 significant genetic loci and 37 psychiatric-associated genes, including <em>ELFN1</em> and <em>ADORA3</em>, demonstrating that continuous, wearable-derived features give greater detection power than traditional case-control GWASs. Overall, we show how wearable technology can help uncover new linkages between behavior and genetics.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"31 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Psychiatric disorders are influenced by genetic and environmental factors. However, their study is hindered by limitations on precisely characterizing human behavior. New technologies such as wearable sensors show promise in surmounting these limitations in that they measure heterogeneous behavior in a quantitative and unbiased fashion. Here, we analyze wearable and genetic data from the Adolescent Brain Cognitive Development (ABCD) study. Leveraging >250 wearable-derived features as digital phenotypes, we show that an interpretable AI framework can objectively classify adolescents with psychiatric disorders more accurately than previously possible. To relate digital phenotypes to the underlying genetics, we show how they can be employed in univariate and multivariate genome-wide association studies (GWASs). Doing so, we identify 16 significant genetic loci and 37 psychiatric-associated genes, including ELFN1 and ADORA3, demonstrating that continuous, wearable-derived features give greater detection power than traditional case-control GWASs. Overall, we show how wearable technology can help uncover new linkages between behavior and genetics.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.