Application of CuFe2O4/CuS as a new green magnetic nanocomposite in adsorption of tetracycline from aqueous solutions: mathematical models of thermodynamics, isotherms, and kinetics

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-12-19 DOI:10.1007/s13201-024-02337-6
Seyedeh Masoomeh Rahimi, Bahman Ramavandi, Mohammad Hadi Moslehi, Mahdi Rahiminia, Negin Nasseh
{"title":"Application of CuFe2O4/CuS as a new green magnetic nanocomposite in adsorption of tetracycline from aqueous solutions: mathematical models of thermodynamics, isotherms, and kinetics","authors":"Seyedeh Masoomeh Rahimi,&nbsp;Bahman Ramavandi,&nbsp;Mohammad Hadi Moslehi,&nbsp;Mahdi Rahiminia,&nbsp;Negin Nasseh","doi":"10.1007/s13201-024-02337-6","DOIUrl":null,"url":null,"abstract":"<div><p>In current study, a novel adsorbent of CuFe<sub>2</sub>O<sub>4</sub>/CuS magnetic nanocomposite (MNC) was constructed via a green approach for tetracycline (TC) removal. The leaf extract of the <i>Alhagi pseudalhagi</i> plant was employed as a green reductant agent. The features of the nanocomposite were characterized using XRD, FTIR, FESEM, TEM, BET, and VSM. Batch studies were conducted to assess the impact of parameters, including pH (3.0–9.0), adsorbent dosage (0.025–2 g/L), TC concentration (5–100 mg/L), and temperature (5–50 °C) on the TC adsorption efficiency. The antibiotic was fully removed at pH 7.0, nanocomposite dose of 1.5 g/L, time of 200 min, and TC content of 5 mg/L. Based on the thermodynamic study, the TC adsorption onto the CuFe<sub>2</sub>O<sub>4</sub>/CuS MNC occurred spontaneously and was primarily driven by physical interactions (physisorption). Positive values of ∆<i>H</i>° (enthalpy change) and ∆<i>S</i>° (entropy change) demonstrated that the adsorption process is naturally endothermic, and the degree of dispersion improves with rising temperature. Adsorption kinetics was well fitted by the pseudo-second-order model. The isotherm studies showed that TC can be removed by the adsorbent at a maximum of 31 mg/g. Overall, CuFe<sub>2</sub>O<sub>4</sub>/CuS MNC exhibited notable efficacy and cost-effectiveness (reusability: 5 times) for the TC adsorption from water.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02337-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02337-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

In current study, a novel adsorbent of CuFe2O4/CuS magnetic nanocomposite (MNC) was constructed via a green approach for tetracycline (TC) removal. The leaf extract of the Alhagi pseudalhagi plant was employed as a green reductant agent. The features of the nanocomposite were characterized using XRD, FTIR, FESEM, TEM, BET, and VSM. Batch studies were conducted to assess the impact of parameters, including pH (3.0–9.0), adsorbent dosage (0.025–2 g/L), TC concentration (5–100 mg/L), and temperature (5–50 °C) on the TC adsorption efficiency. The antibiotic was fully removed at pH 7.0, nanocomposite dose of 1.5 g/L, time of 200 min, and TC content of 5 mg/L. Based on the thermodynamic study, the TC adsorption onto the CuFe2O4/CuS MNC occurred spontaneously and was primarily driven by physical interactions (physisorption). Positive values of ∆H° (enthalpy change) and ∆S° (entropy change) demonstrated that the adsorption process is naturally endothermic, and the degree of dispersion improves with rising temperature. Adsorption kinetics was well fitted by the pseudo-second-order model. The isotherm studies showed that TC can be removed by the adsorbent at a maximum of 31 mg/g. Overall, CuFe2O4/CuS MNC exhibited notable efficacy and cost-effectiveness (reusability: 5 times) for the TC adsorption from water.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Assessing water demand and supply in the Upper Indus Basin using integrated hydrological modeling under varied socioeconomic scenarios Application of CuFe2O4/CuS as a new green magnetic nanocomposite in adsorption of tetracycline from aqueous solutions: mathematical models of thermodynamics, isotherms, and kinetics Analyzing the impact of non-Newtonian nanofluid flow on pollutant discharge concentration in wastewater management using an artificial computing approach Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters Evaluating basic household characteristics influencing domestic water demand in tropical environments: a comprehensive case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1