Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-12-02 DOI:10.1021/acsanm.4c0454910.1021/acsanm.4c04549
Ding Wang, Ping Wang, Shubham Mondal, Mingtao Hu, Yuanpeng Wu, Danhao Wang, Kai Sun and Zetian Mi*, 
{"title":"Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires","authors":"Ding Wang,&nbsp;Ping Wang,&nbsp;Shubham Mondal,&nbsp;Mingtao Hu,&nbsp;Yuanpeng Wu,&nbsp;Danhao Wang,&nbsp;Kai Sun and Zetian Mi*,&nbsp;","doi":"10.1021/acsanm.4c0454910.1021/acsanm.4c04549","DOIUrl":null,"url":null,"abstract":"<p >The pursuit of extreme device miniaturization and the exploration of associated physical phenomena has spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. The recently discovered wurtzite ferroelectrics offer intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. In this study, we present a comprehensive investigation of the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrate that a highly ordered wurtzite phase ScAlN can be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films. We provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride toward the development of next-generation, miniaturized devices based on wurtzite ferroelectrics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26756–26764 26756–26764"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04549","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of extreme device miniaturization and the exploration of associated physical phenomena has spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. The recently discovered wurtzite ferroelectrics offer intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. In this study, we present a comprehensive investigation of the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrate that a highly ordered wurtzite phase ScAlN can be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films. We provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride toward the development of next-generation, miniaturized devices based on wurtzite ferroelectrics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤锌矿铁电体的纳米工程:揭示ScAlN纳米线中的相变和铁电开关
对极端器件小型化的追求和对相关物理现象的探索激发了人们对晶体相控制和降维铁电开关的极大兴趣。最近发现的纤锌矿铁电体具有有趣的压电和铁电特性、CMOS兼容性以及与主流半导体技术的无缝集成。在这项研究中,我们全面研究了scn纳米线在整个Sc成分范围内的晶体学相变。虽然随着Sc成分的增加,观察到从纤锌矿到立方相的逐渐转变,但我们进一步证明,高度有序的纤锌矿相ScAlN可以被限制在ScAlN/GaN界面上,其Sc含量超过了传统薄膜中的可能性。我们提供了ScAlN纳米线中铁电开关的第一个证据,这一结果对未来器件小型化具有重要意义。我们的可调谐铁电ScAlN纳米线的演示为纤锌矿铁电体的纳米尺度、畴、合金、应变和量子工程开辟了新的可能性,代表了下一代基于纤锌矿铁电体的小型化器件的发展迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Nanostructured Ternary Ni–Co–V Multicomponent Oxide Electrocatalyst with Enhanced Electron Transport for Overall Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1