Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-11-29 DOI:10.1021/acs.chemmater.4c0250610.1021/acs.chemmater.4c02506
Cristina Lopez-Puga,  and , Jincheng Du*, 
{"title":"Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations","authors":"Cristina Lopez-Puga,&nbsp; and ,&nbsp;Jincheng Du*,&nbsp;","doi":"10.1021/acs.chemmater.4c0250610.1021/acs.chemmater.4c02506","DOIUrl":null,"url":null,"abstract":"<p >Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10<sup>–7</sup> cm<sup>2</sup> s<sup>–1</sup>) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (&gt;4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects <i>V</i><sub>Li</sub><sup>′</sup> and <i>F</i><sub>O</sub><sup>•</sup>. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11570–11582 11570–11582"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02506","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li7La3Zr2O12 (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10–7 cm2 s–1) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (>4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects VLi and FO. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Drastic Enhancement of Electrical Conductivity of Metal–Organic Frameworks Displaying Spin Crossover Supramolecular Assembly of Charge-Tunable Metal–Phenolic Networks Unveiling the Effect of Shape Anisotropy of Plasmonic Tungsten Oxide Nanostructures for Enhanced Electrocatalytic Hydrogen Evolution Band Gap Narrowing in Lead-Halide Perovskites by Dynamic Defect Self-Doping for Enhanced Light Absorption and Energy Upconversion Elemental Reaction Steps between Elemental Sulfur and Metal Carboxylate during the Synthesis of Metal Sulfide Nanocrystals in Hydrocarbon Solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1