Cu8S5/PDA@SA Hydrogel: A Synergistic Photothermal and Photocatalytic Approach for Efficient Solar Steam Sterilization

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-11-26 DOI:10.1021/acsaem.4c0265210.1021/acsaem.4c02652
Miao Yu, Yuhang Wang, Yihan Liu, Yanxia Wang, Yunfeng Qiu*, Zhuo Ma, Youshan Wang* and Shaoqin Liu*, 
{"title":"Cu8S5/PDA@SA Hydrogel: A Synergistic Photothermal and Photocatalytic Approach for Efficient Solar Steam Sterilization","authors":"Miao Yu,&nbsp;Yuhang Wang,&nbsp;Yihan Liu,&nbsp;Yanxia Wang,&nbsp;Yunfeng Qiu*,&nbsp;Zhuo Ma,&nbsp;Youshan Wang* and Shaoqin Liu*,&nbsp;","doi":"10.1021/acsaem.4c0265210.1021/acsaem.4c02652","DOIUrl":null,"url":null,"abstract":"<p >Solar absorbers play a crucial role in interfacial solar steam generation (ISSG) technology, facilitating efficient steam generation and sterilization. Nonetheless, limitations in solar conversion efficiency and water transport effects, coupled with challenges in outdoor portability of traditional installations, have hindered the progress in steam sterilization technology. In this work, based on Cu<sub>8</sub>S<sub>5</sub>/PDA nanoparticles (NPs) and sodium alginate (SA) hydrogel, a solar steam sterilization absorber with superior photothermal conversion and antibacterial properties was developed. The Cu<sub>8</sub>S<sub>5</sub>/PDA@SA hydrogel synthesized via in situ deposition demonstrated remarkable full-spectrum absorption performance and stable photothermal conversion ability (37.56%), capable of effectively destroying bacterial structure and metabolic functions through multiple therapeutic mechanisms: photothermal therapy via thermal effect of high temperature and chemodynamic and photodynamic therapies via oxidation of reactive oxygen species and depletion of intracellular glutathione, achieving 100% steam antibacterial efficiency and presenting excellent antibacterial potential under low irradiation conditions. This study proposes a promising avenue for the development of environmentally friendly and easy-to-use solar steam sterilizers for off-grid conditions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11240–11252 11240–11252"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solar absorbers play a crucial role in interfacial solar steam generation (ISSG) technology, facilitating efficient steam generation and sterilization. Nonetheless, limitations in solar conversion efficiency and water transport effects, coupled with challenges in outdoor portability of traditional installations, have hindered the progress in steam sterilization technology. In this work, based on Cu8S5/PDA nanoparticles (NPs) and sodium alginate (SA) hydrogel, a solar steam sterilization absorber with superior photothermal conversion and antibacterial properties was developed. The Cu8S5/PDA@SA hydrogel synthesized via in situ deposition demonstrated remarkable full-spectrum absorption performance and stable photothermal conversion ability (37.56%), capable of effectively destroying bacterial structure and metabolic functions through multiple therapeutic mechanisms: photothermal therapy via thermal effect of high temperature and chemodynamic and photodynamic therapies via oxidation of reactive oxygen species and depletion of intracellular glutathione, achieving 100% steam antibacterial efficiency and presenting excellent antibacterial potential under low irradiation conditions. This study proposes a promising avenue for the development of environmentally friendly and easy-to-use solar steam sterilizers for off-grid conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu8S5/PDA@SA水凝胶:高效太阳能蒸汽灭菌的协同光热和光催化方法
太阳能吸收体在界面太阳能蒸汽产生(ISSG)技术中起着至关重要的作用,促进了高效的蒸汽产生和灭菌。然而,太阳能转换效率和水运效应的限制,加上传统装置在室外便携性方面的挑战,阻碍了蒸汽灭菌技术的发展。本研究以Cu8S5/PDA纳米颗粒(NPs)和海藻酸钠(SA)水凝胶为材料,研制了一种光热转化和抗菌性能优异的太阳能蒸汽杀菌吸收剂。原位沉积法合成的Cu8S5/PDA@SA水凝胶具有显著的全光谱吸收性能和稳定的光热转换能力(37.56%),能够通过多种治疗机制有效破坏细菌结构和代谢功能;利用高温热效应进行光热治疗,利用活性氧氧化和细胞内谷胱甘肽耗竭进行化学动力和光动力治疗,达到100%的蒸汽抗菌效率,在低辐照条件下具有良好的抗菌潜力。本研究为开发环境友好且易于使用的离网太阳能蒸汽灭菌器提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
terephthalic acid (TA)
阿拉丁
8-anilino-1-naphthalenesulfonic acid (ANS)
阿拉丁
resazurin sodium salt
阿拉丁
calcium chloride (CaCl2)
阿拉丁
sodium sulfide (Na2S)
阿拉丁
Copper(II) sulfate
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Back-Contact Perovskite Solar Cell Modules Fabricated via Roll-to-Roll Slot-Die Coating: Scale-Up toward Manufacturing Back-Contact Perovskite Solar Cell Modules Fabricated via Roll-to-Roll Slot-Die Coating: Scale-Up toward Manufacturing. Influence of Oxide Reservoirs on the Performance of Direct Air Electrolysis Using NaClO4 as a Deliquescent Neutral Electrolyte Salt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1