Mechanism of a Novel Carrier Buffer in Arc Atomic Emission Spectroscopy

Zhi-xiong Li, Bo-yu Du, Lian-kai Zhang*, Jing-jiang Yang, Shun-rong Xue, Gui-ren Chen, Hui Yang, Can-feng Li, Cheng-zhong He, Qian-shu Lu, Song Zhang and Qiang Li, 
{"title":"Mechanism of a Novel Carrier Buffer in Arc Atomic Emission Spectroscopy","authors":"Zhi-xiong Li,&nbsp;Bo-yu Du,&nbsp;Lian-kai Zhang*,&nbsp;Jing-jiang Yang,&nbsp;Shun-rong Xue,&nbsp;Gui-ren Chen,&nbsp;Hui Yang,&nbsp;Can-feng Li,&nbsp;Cheng-zhong He,&nbsp;Qian-shu Lu,&nbsp;Song Zhang and Qiang Li,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0002510.1021/acsmeasuresciau.4c00025","DOIUrl":null,"url":null,"abstract":"<p >The research, which was a component of a broader initiative, focused on synthesizing a pioneering carrier buffer particularly intended for arc atomic emission spectroscopy. By analyzing various evaporation curves and quickly refining the formula of the novel carrier buffer, a more comprehensive, selective, and expedited condition was established for fractionating the target elements from the sample using the single-electrode carrier distillation method, thereby increasing the sensitivity of atomic emission spectrum analysis. Furthermore, the buffer mechanism was thoroughly investigated, using data from field emission scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and energy-dispersive spectrometry (EDS). The result revealed that multiphase chemical reactions occurred within the cup-shaped electrode micrographite reactor, where the components of the carrier buffer synergistically promoted the fractionation of the measured elements. Moreover, CaCO<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub> had a different “catalytic” impact. Finally, it was reasonable to assume that graphite remained inert in the reaction, and the composite molten body (<i>m</i>SiO<sub>2</sub>·<i>n</i>Al<sub>2</sub>O<sub>3</sub>·<i>x</i>CaO·<i>y</i>BaO·<i>z</i>Fe<sub>2</sub>O<sub>3</sub>) developed during the interaction between the carrier buffer and sample matrix.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 6","pages":"638–650 638–650"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The research, which was a component of a broader initiative, focused on synthesizing a pioneering carrier buffer particularly intended for arc atomic emission spectroscopy. By analyzing various evaporation curves and quickly refining the formula of the novel carrier buffer, a more comprehensive, selective, and expedited condition was established for fractionating the target elements from the sample using the single-electrode carrier distillation method, thereby increasing the sensitivity of atomic emission spectrum analysis. Furthermore, the buffer mechanism was thoroughly investigated, using data from field emission scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and energy-dispersive spectrometry (EDS). The result revealed that multiphase chemical reactions occurred within the cup-shaped electrode micrographite reactor, where the components of the carrier buffer synergistically promoted the fractionation of the measured elements. Moreover, CaCO3 and Fe2O3 had a different “catalytic” impact. Finally, it was reasonable to assume that graphite remained inert in the reaction, and the composite molten body (mSiO2·nAl2O3·xCaO·yBaO·zFe2O3) developed during the interaction between the carrier buffer and sample matrix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型载流子缓冲在电弧原子发射光谱中的机理
这项研究是一项更广泛倡议的组成部分,重点是合成一种开创性的载流子缓冲液,特别是用于电弧原子发射光谱。通过对各种蒸发曲线的分析和对新型载流子缓冲液配方的快速细化,为单电极载流子蒸馏法从样品中分离目标元素建立了更加全面、选择性和快速的条件,从而提高了原子发射光谱分析的灵敏度。此外,利用场发射扫描电镜(SEM)、x射线粉末衍射(XRD)和能量色散光谱(EDS)等数据对缓冲机理进行了深入研究。结果表明,在杯状电极微石墨反应器内发生多相化学反应,其中载体缓冲液的组分协同促进了被测元素的分馏。此外,CaCO3和Fe2O3具有不同的“催化”作用。最后,可以合理地假设石墨在反应中保持惰性,在载体缓冲液与样品基体相互作用过程中形成复合熔融体(mSiO2·nAl2O3·xCaO·yBaO·zFe2O3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs. Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs Electrochemical Profiling of vWFA2 for Systemic Inflammatory State Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1