{"title":"A Decentralized Control of Cascaded-Type AC Microgrids Integrating Dispatchable and Nondispatchable Generations","authors":"Lang Li, Peng Tian, Genglong Yan, Shixun Shen","doi":"10.1155/etep/4120338","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Existing studies on decentralized control of islanded cascaded-type AC microgrids mainly focus on either dispatchable or nondispatchable DGs. However, islanded cascaded-type AC microgrids may contain both types of DGs. To address this issue, a decentralized control scheme is proposed that integrates both dispatchable and nondispatchable DGs for the islanded cascaded-type AC microgrids. By performing this method, frequency synchronization and power factor angle consistency for all DGs are obtained in a communication-free manner. One dispatchable DG is regulated to maintain constant voltage amplitudes at the point of common coupling (PCC). A high-quality power supply for load demands is achieved. Meanwhile, the nondispatchable DG is controlled to output active power based on its available capacity for using renewable energy efficiently. Next, a stability analysis of the proposed control for the cascaded-type AC microgrids is performed. Finally, simulations and experiments are executed to showcase the efficacy of the proposed scheme.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/4120338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/4120338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Existing studies on decentralized control of islanded cascaded-type AC microgrids mainly focus on either dispatchable or nondispatchable DGs. However, islanded cascaded-type AC microgrids may contain both types of DGs. To address this issue, a decentralized control scheme is proposed that integrates both dispatchable and nondispatchable DGs for the islanded cascaded-type AC microgrids. By performing this method, frequency synchronization and power factor angle consistency for all DGs are obtained in a communication-free manner. One dispatchable DG is regulated to maintain constant voltage amplitudes at the point of common coupling (PCC). A high-quality power supply for load demands is achieved. Meanwhile, the nondispatchable DG is controlled to output active power based on its available capacity for using renewable energy efficiently. Next, a stability analysis of the proposed control for the cascaded-type AC microgrids is performed. Finally, simulations and experiments are executed to showcase the efficacy of the proposed scheme.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.