Estimation of extreme wind speeds with different return periods in the Northwest Pacific

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2024-12-11 DOI:10.1002/met.70012
Lisha Kong, Xiuzhi Zhang, Huanping Wu, Yu Li
{"title":"Estimation of extreme wind speeds with different return periods in the Northwest Pacific","authors":"Lisha Kong,&nbsp;Xiuzhi Zhang,&nbsp;Huanping Wu,&nbsp;Yu Li","doi":"10.1002/met.70012","DOIUrl":null,"url":null,"abstract":"<p>It is vital to analyze extreme wind speed in marine engineering designs. However, due to the lack of observational data, it is impossible to establish the measured long-term wind speed series. This study simulates the annual hourly wind field of every tropical cyclone (TC) with a resolution of 5 km in the Northwest Pacific (NWP) from 1981 to 2020. On this basis, combined with the sea surface wind speed data observed by the satellites and the ships, the 40-year annual maximum wind speed series of NWP are established. The Gumbel, three-parameter Weibull (Weibull-3par), two-parameter Weibull (Weibull-2par), generalized extreme-value (GEV) distribution, and the two parameter estimation methods are used to estimate the extreme wind speeds with different return periods (RPs) at four typical locations in the NWP. Meanwhile, the effects of different extreme-value distributions and different parameter estimation methods on the estimation results are discussed. Subsequently, the best distribution and parameter estimation method for each grid in the NWP are determined by the goodness-of-fit test, and then the spatial distributions of extreme wind speeds with different RPs along with uncertainty estimates in the entire NWP are obtained. The results show that extreme wind speeds with RPs of 5, 25, 50, and 100 years in the east of Taiwan and Philippines can reach a maximum of 43.8, 60.8, 70.4, and 81.4 m s<sup>−1</sup>, respectively.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is vital to analyze extreme wind speed in marine engineering designs. However, due to the lack of observational data, it is impossible to establish the measured long-term wind speed series. This study simulates the annual hourly wind field of every tropical cyclone (TC) with a resolution of 5 km in the Northwest Pacific (NWP) from 1981 to 2020. On this basis, combined with the sea surface wind speed data observed by the satellites and the ships, the 40-year annual maximum wind speed series of NWP are established. The Gumbel, three-parameter Weibull (Weibull-3par), two-parameter Weibull (Weibull-2par), generalized extreme-value (GEV) distribution, and the two parameter estimation methods are used to estimate the extreme wind speeds with different return periods (RPs) at four typical locations in the NWP. Meanwhile, the effects of different extreme-value distributions and different parameter estimation methods on the estimation results are discussed. Subsequently, the best distribution and parameter estimation method for each grid in the NWP are determined by the goodness-of-fit test, and then the spatial distributions of extreme wind speeds with different RPs along with uncertainty estimates in the entire NWP are obtained. The results show that extreme wind speeds with RPs of 5, 25, 50, and 100 years in the east of Taiwan and Philippines can reach a maximum of 43.8, 60.8, 70.4, and 81.4 m s−1, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Estimation of extreme wind speeds with different return periods in the Northwest Pacific Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India Improving blended probability forecasts with neural networks Correction to “Skilful probabilistic medium-range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system” Drought forecasting with regionalization of climate variables and generalized linear model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1