Synthesis and Characterization of Metallic (Fe-Ni, Fe-Ni-Si) Reference Materials for SIMS 34S/32S Measurements

IF 2.7 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geostandards and Geoanalytical Research Pub Date : 2024-08-27 DOI:10.1111/ggr.12584
Celia Dalou, Lenny Riguet, Johan Villeneuve, Laurent Tissandier, Thomas Rigaudier, Damien Cividini, Julien Zollinger, Guillaume Paris
{"title":"Synthesis and Characterization of Metallic (Fe-Ni, Fe-Ni-Si) Reference Materials for SIMS 34S/32S Measurements","authors":"Celia Dalou,&nbsp;Lenny Riguet,&nbsp;Johan Villeneuve,&nbsp;Laurent Tissandier,&nbsp;Thomas Rigaudier,&nbsp;Damien Cividini,&nbsp;Julien Zollinger,&nbsp;Guillaume Paris","doi":"10.1111/ggr.12584","DOIUrl":null,"url":null,"abstract":"<p>Secondary ion mass spectrometry (SIMS) is often used to determine the sulfur contents and isotope ratios of metallic alloys in meteorites or high-pressure experimental samples. However, SIMS analyses involve calibration and the determination of instrumental mass fractionation in reference materials with a matrix composition similar to that of the unknown samples. To provide metallic reference materials adapted to S measurements <i>via</i> SIMS, we synthesised a series of twenty-eight alloys comprising four FeNi(±Si) compositions (Fe<sub>95</sub>Ni<sub>5</sub>, Fe<sub>90</sub>Ni<sub>10</sub>, Fe<sub>80</sub>Ni<sub>20</sub>, and Fe<sub>80</sub>Ni<sub>15</sub>Si<sub>5</sub>) with S contents varying from 100 μg g<sup>−1</sup> to 4 g/100g using the “melt spinning” method, which guarantees that the metal alloys are rapidly quenched at ~ 10<sup>6</sup> K s<sup>−1</sup>. Sulfur contents were determined at the Service d'Analyse des Roches et Minéraux at the CRPG and absolute δ<sup>34</sup>S values were determined by multi-collector ICP-MS (MC-ICP-MS, ThermoScientific Neptune) and isotope ratio mass spectrometry (Thermoscientific Delta V). A δ<sup>34</sup>S value of 16.01 ± 0.31‰ was consistently obtained using the MC-ICP-MS, which was indistinguishable of the δ<sup>34</sup>S value of the FeS starting material (15.95 ± 0.08‰). It suggests that S did not undergo isotopic fractionation during the melting process. Of fifteen samples containing ≤ 5000 μg g<sup>−1</sup> S, SIMS measurements with 15-μm-diameter spots were repeatable to within 10% relative (1 standard deviation, 1<i>s</i>) for S contents and 2‰ for δ<sup>34</sup>S values. However, samples containing &gt; 5000 μg g<sup>−1</sup> S showed FeNi–FeS immiscibility, leading to minor dispersion of the S mass fractions and δ<sup>34</sup>S values. No matrix effect was observed for Fe-Ni, Si, or S contents in terms of the calibration curves and instrumental mass fractionation. We ultimately recommend eight samples as reliable reference materials for S isotopic measurements by SIMS, which we can share worldwide with other laboratories.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 4","pages":"927-940"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12584","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary ion mass spectrometry (SIMS) is often used to determine the sulfur contents and isotope ratios of metallic alloys in meteorites or high-pressure experimental samples. However, SIMS analyses involve calibration and the determination of instrumental mass fractionation in reference materials with a matrix composition similar to that of the unknown samples. To provide metallic reference materials adapted to S measurements via SIMS, we synthesised a series of twenty-eight alloys comprising four FeNi(±Si) compositions (Fe95Ni5, Fe90Ni10, Fe80Ni20, and Fe80Ni15Si5) with S contents varying from 100 μg g−1 to 4 g/100g using the “melt spinning” method, which guarantees that the metal alloys are rapidly quenched at ~ 106 K s−1. Sulfur contents were determined at the Service d'Analyse des Roches et Minéraux at the CRPG and absolute δ34S values were determined by multi-collector ICP-MS (MC-ICP-MS, ThermoScientific Neptune) and isotope ratio mass spectrometry (Thermoscientific Delta V). A δ34S value of 16.01 ± 0.31‰ was consistently obtained using the MC-ICP-MS, which was indistinguishable of the δ34S value of the FeS starting material (15.95 ± 0.08‰). It suggests that S did not undergo isotopic fractionation during the melting process. Of fifteen samples containing ≤ 5000 μg g−1 S, SIMS measurements with 15-μm-diameter spots were repeatable to within 10% relative (1 standard deviation, 1s) for S contents and 2‰ for δ34S values. However, samples containing > 5000 μg g−1 S showed FeNi–FeS immiscibility, leading to minor dispersion of the S mass fractions and δ34S values. No matrix effect was observed for Fe-Ni, Si, or S contents in terms of the calibration curves and instrumental mass fractionation. We ultimately recommend eight samples as reliable reference materials for S isotopic measurements by SIMS, which we can share worldwide with other laboratories.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geostandards and Geoanalytical Research
Geostandards and Geoanalytical Research 地学-地球科学综合
CiteScore
7.10
自引率
18.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.
期刊最新文献
Issue Information IAG Membership Information Geostandards and Geoanalytical Research GGR Handbook of Rock and Mineral Analysis Chapter 5 The Inductively Coupled Plasma GGR Handbook of Rock and Mineral Analysis [Chapter 13] Laser-Induced Breakdown Spectroscopy (LIBS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1