Shigenori Miura, Minghao Nie, Kazuo Emoto, Shoji Takeuchi
{"title":"Control of Tissue Strain Is Essential for Enhanced Dermal Innervation in the Three-Dimensional Skin Engineering.","authors":"Shigenori Miura, Minghao Nie, Kazuo Emoto, Shoji Takeuchi","doi":"10.1021/acsbiomaterials.4c01097","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered skin models with sensory innervation are a growing and challenging field of research aimed at applications in regenerative medicine, biosensing, and drug screening. Researchers are attempting to fabricate innervated skin tissues using collagen sponges, cell culture inserts, and microfluidic devices to partially mimic the layered structure of the skin. However, innervation of the full-thickness skin model has not yet been achieved. Here, using the anchoring culture device we previously reported, which is a powerful tool to construct a full-thickness three-dimensional (3D) skin model with balanced tissue contraction forces, we drastically improved dermal layer innervation using a composite hydrogel of collagen and Matrigel (Coll:MG). To determine the preferable hydrogel matrix for neurite extension in the 3D skin construct, DRG neural spheroids were placed at the bottom of the dermal layer composed of various hydrogel scaffold, including type I collagen from different origins (dermis or tendon) and Coll:MG composite hydrogel with different compositions. We showed that the Coll:MG (2:1) composite hydrogel significantly increased vertical neurite extension in the dermal layer, concomitant with the reduced tissue shrinkage during the culture. In contrast, in the collagen-only hydrogel, neurite extension occurred mostly in the horizontal direction, and tissues sometimes detached from the anchors due to significant shrinkage, indicating that tissue shrinkage may affect the direction of neurite extension. To exemplify this idea, 3D skin constructed in the device was partially detached from the anchors to comply with the cell-induced tissue shrinkage and reduce the strain on the tissue. The data showed that the partial allowance of in-plane tissue strain remarkably increased vertical neurite extension compared to the control cultures. Collectively, our results strongly suggest that neurite extension angles can be modulated by adjusting the tissue strain during the culture. Our findings highlight the importance of controlling tissue strain for the advancement of an innervated skin model.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01097","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered skin models with sensory innervation are a growing and challenging field of research aimed at applications in regenerative medicine, biosensing, and drug screening. Researchers are attempting to fabricate innervated skin tissues using collagen sponges, cell culture inserts, and microfluidic devices to partially mimic the layered structure of the skin. However, innervation of the full-thickness skin model has not yet been achieved. Here, using the anchoring culture device we previously reported, which is a powerful tool to construct a full-thickness three-dimensional (3D) skin model with balanced tissue contraction forces, we drastically improved dermal layer innervation using a composite hydrogel of collagen and Matrigel (Coll:MG). To determine the preferable hydrogel matrix for neurite extension in the 3D skin construct, DRG neural spheroids were placed at the bottom of the dermal layer composed of various hydrogel scaffold, including type I collagen from different origins (dermis or tendon) and Coll:MG composite hydrogel with different compositions. We showed that the Coll:MG (2:1) composite hydrogel significantly increased vertical neurite extension in the dermal layer, concomitant with the reduced tissue shrinkage during the culture. In contrast, in the collagen-only hydrogel, neurite extension occurred mostly in the horizontal direction, and tissues sometimes detached from the anchors due to significant shrinkage, indicating that tissue shrinkage may affect the direction of neurite extension. To exemplify this idea, 3D skin constructed in the device was partially detached from the anchors to comply with the cell-induced tissue shrinkage and reduce the strain on the tissue. The data showed that the partial allowance of in-plane tissue strain remarkably increased vertical neurite extension compared to the control cultures. Collectively, our results strongly suggest that neurite extension angles can be modulated by adjusting the tissue strain during the culture. Our findings highlight the importance of controlling tissue strain for the advancement of an innervated skin model.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture