Enhancing Chemotherapy Efficacy via an Autologous Erythrocyte-Anchoring Strategy with a Closed-System Drug-Transfer Device.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-12-18 DOI:10.1021/acsbiomaterials.4c02128
Lingzi Feng, Xiangqian Wang, Ziyi Gao, Yuqing Tong, Xiaopeng Yuan, Ting Wu, Donglin Xia, Yong Hu
{"title":"Enhancing Chemotherapy Efficacy via an Autologous Erythrocyte-Anchoring Strategy with a Closed-System Drug-Transfer Device.","authors":"Lingzi Feng, Xiangqian Wang, Ziyi Gao, Yuqing Tong, Xiaopeng Yuan, Ting Wu, Donglin Xia, Yong Hu","doi":"10.1021/acsbiomaterials.4c02128","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapeutic drugs often fail to localize efficiently to tumors when administered intravenously, causing off-target effects. This study proposes an autologous erythrocyte (ER)-anchoring strategy to improve chemotherapy efficacy and reduce side effects. Utilizing a modified hemodialysis instrument, a closed-system drug-transfer device was developed for autologous ER procurement and immunogenicity mitigation. Doxorubicin (DOX) and indocyanine green (ICG) were encapsulated in autologous ERs and then modified with DSPE-PEG-FA. The final product, DOX-ICG@ER-D, was reintroduced into circulation to enhance chemotherapy. These obtained DOX-ICG@ER-D showed good stability, minimal cardiotoxicity, and extended circulation time. Compared to free DOX, DOX-ICG@ER-D had a higher accumulation of DOX in hepatocellular carcinoma and the release of DOX could be controlled by laser irradiation. Tumor-bearing rats treated by these DOX-ICG@ER-D demonstrated improved antitumor efficacy and reduced cardiotoxicity. Thus, this autologous ER-anchoring strategy offers a promising alternative to intravenous chemotherapy in the clinic.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02128","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapeutic drugs often fail to localize efficiently to tumors when administered intravenously, causing off-target effects. This study proposes an autologous erythrocyte (ER)-anchoring strategy to improve chemotherapy efficacy and reduce side effects. Utilizing a modified hemodialysis instrument, a closed-system drug-transfer device was developed for autologous ER procurement and immunogenicity mitigation. Doxorubicin (DOX) and indocyanine green (ICG) were encapsulated in autologous ERs and then modified with DSPE-PEG-FA. The final product, DOX-ICG@ER-D, was reintroduced into circulation to enhance chemotherapy. These obtained DOX-ICG@ER-D showed good stability, minimal cardiotoxicity, and extended circulation time. Compared to free DOX, DOX-ICG@ER-D had a higher accumulation of DOX in hepatocellular carcinoma and the release of DOX could be controlled by laser irradiation. Tumor-bearing rats treated by these DOX-ICG@ER-D demonstrated improved antitumor efficacy and reduced cardiotoxicity. Thus, this autologous ER-anchoring strategy offers a promising alternative to intravenous chemotherapy in the clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Phycocyanin/Hyaluronic Acid Microneedle Patches Loaded with Celastrol Nanoparticles for Synergistic Treatment of Diabetic Nephropathy. Control of Tissue Strain Is Essential for Enhanced Dermal Innervation in the Three-Dimensional Skin Engineering. Enhancing Chemotherapy Efficacy via an Autologous Erythrocyte-Anchoring Strategy with a Closed-System Drug-Transfer Device. Modulating the γ-ray Protection Properties of Melanin via a Highly Conjugated Catechol Structure. Portable Electroanalytical Platform Based on Eco-Friendly Biomass-Based Hydrogels with Bimetallic MOF Composites for Trace Acetaminophen Determination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1