Thermodynamic Perturbation Theory for Charged Branched Polymers.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-01-14 Epub Date: 2024-12-18 DOI:10.1021/acs.jctc.4c01187
Leying Qing, Xiujun Wang, Shichao Li, Jian Zhang, Jian Jiang
{"title":"Thermodynamic Perturbation Theory for Charged Branched Polymers.","authors":"Leying Qing, Xiujun Wang, Shichao Li, Jian Zhang, Jian Jiang","doi":"10.1021/acs.jctc.4c01187","DOIUrl":null,"url":null,"abstract":"<p><p>Classical density functional theory (DFT) provides a versatile framework to study the polymers with complex topological structure. Generally, a classical DFT describes the excess Helmholtz free energy of nonbonded chain connectivity due to excluded-volume effects and electrostatic correlations using the first-order thermodynamic perturbation theory (referred to as DFT-TPT1). Beyond first-order perturbation, the second-order TPT (TPT2) captures not only the correlations between neighboring monomers but also the interactions within three consecutive monomers, playing a crucial role in describing the polymer topology. However, the numerical implementation of TPT2 is limited by the lack of an effective triple correlation function (CF), especially for charged systems. Here, we propose an effective triple CF and incorporate it into DFT using TPT2 (referred to as DFT-eTPT2) to describe the nonbonded chain connectivity due to excluded-volume effects and electrostatic correlations. Using the data from molecular dynamics simulation as a benchmark, DFT-eTPT2 shows a clear improvement over DFT-TPT1 in predicting the density profiles of both neutral and charged branched polymer brushes, accurately capturing key structural features, such as the significant peaks near the branching point in the density profiles. In short, this work provides a precise and efficient theoretical tool for revealing molecular-level insights into branched polymers and their brushes.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"333-346"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Classical density functional theory (DFT) provides a versatile framework to study the polymers with complex topological structure. Generally, a classical DFT describes the excess Helmholtz free energy of nonbonded chain connectivity due to excluded-volume effects and electrostatic correlations using the first-order thermodynamic perturbation theory (referred to as DFT-TPT1). Beyond first-order perturbation, the second-order TPT (TPT2) captures not only the correlations between neighboring monomers but also the interactions within three consecutive monomers, playing a crucial role in describing the polymer topology. However, the numerical implementation of TPT2 is limited by the lack of an effective triple correlation function (CF), especially for charged systems. Here, we propose an effective triple CF and incorporate it into DFT using TPT2 (referred to as DFT-eTPT2) to describe the nonbonded chain connectivity due to excluded-volume effects and electrostatic correlations. Using the data from molecular dynamics simulation as a benchmark, DFT-eTPT2 shows a clear improvement over DFT-TPT1 in predicting the density profiles of both neutral and charged branched polymer brushes, accurately capturing key structural features, such as the significant peaks near the branching point in the density profiles. In short, this work provides a precise and efficient theoretical tool for revealing molecular-level insights into branched polymers and their brushes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. Assessing Nonadiabatic Dynamics Methods in Long Timescales. How the Piecewise-Linearity Requirement for the Density Affects Quantities in the Kohn-Sham System. Coil-Library-Derived Amino-Acid-Specific Side-Chain χ1 Dihedral Angle Potentials for AMBER-Type Protein Force Field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1