Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (Camellia sinensis. var. assamica).

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-12-18 DOI:10.1021/jasms.4c00390
Min Feng, Yonglin Li, Yanfang Qin, Wensi Ma, Dabing Ren, Lunzhao Yi
{"title":"Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (<i>Camellia sinensis</i>. var. <i>assamica</i>).","authors":"Min Feng, Yonglin Li, Yanfang Qin, Wensi Ma, Dabing Ren, Lunzhao Yi","doi":"10.1021/jasms.4c00390","DOIUrl":null,"url":null,"abstract":"<p><p>Flavan-3-ol oligomers (FLOs), including proanthocyanidins (PAs) and theasinensins (TSs), contribute greatly to the flavor and bioactivity of the tea beverage. Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry has been widely used in profiling a wide range of compounds in tea. However, the detection and identification of FLOs with low concentration and high structural diversity remain meaningful yet challenging work. Herein, we propose a strategy that enables efficient discovery and annotation of FLOs, especially those with a relatively high degree of polymerization (DP, ≥3). Based on the known monomers and the specific polymerization pattern between them, the strategy predicted a theoretical list of precursor ions of FLO. Matching the predicted list against the experimental ion features screened out 490 features as the candidate of FLOs from over 10 000 raw features. Investigation of the fragmentation pathways of 17 known FLOs found that both PAs and TSs are easily subjected to RDA cleavage, which produced a series of characteristic fragmentation ions and neutral losses. Moreover, successive cleavage of the C<sub>4</sub> → C<sub>8</sub> bond between monomer units is observed for PAs, leading to the generation of characteristic fragmentation ions corresponding to monomeric flavan-3-ols. Assisted by the characteristic fragmentation pathways, 52 FLOs (DP: 2-6) were finally annotated from the 490 retained features. Their chemical structures were verified by depolymerization experiments using menthofuran as the nucleophilic trapping reagent. Among them, the pentamers and hexamers were detected in a Yunnan large leaf tea for the first time. Semiquantitation and multivariate statistical analysis indicate that PAs exhibit higher contents in green tea, and TSs show higher levels in black and white tea.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00390","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Flavan-3-ol oligomers (FLOs), including proanthocyanidins (PAs) and theasinensins (TSs), contribute greatly to the flavor and bioactivity of the tea beverage. Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry has been widely used in profiling a wide range of compounds in tea. However, the detection and identification of FLOs with low concentration and high structural diversity remain meaningful yet challenging work. Herein, we propose a strategy that enables efficient discovery and annotation of FLOs, especially those with a relatively high degree of polymerization (DP, ≥3). Based on the known monomers and the specific polymerization pattern between them, the strategy predicted a theoretical list of precursor ions of FLO. Matching the predicted list against the experimental ion features screened out 490 features as the candidate of FLOs from over 10 000 raw features. Investigation of the fragmentation pathways of 17 known FLOs found that both PAs and TSs are easily subjected to RDA cleavage, which produced a series of characteristic fragmentation ions and neutral losses. Moreover, successive cleavage of the C4 → C8 bond between monomer units is observed for PAs, leading to the generation of characteristic fragmentation ions corresponding to monomeric flavan-3-ols. Assisted by the characteristic fragmentation pathways, 52 FLOs (DP: 2-6) were finally annotated from the 490 retained features. Their chemical structures were verified by depolymerization experiments using menthofuran as the nucleophilic trapping reagent. Among them, the pentamers and hexamers were detected in a Yunnan large leaf tea for the first time. Semiquantitation and multivariate statistical analysis indicate that PAs exhibit higher contents in green tea, and TSs show higher levels in black and white tea.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Machine Learning Correlation of Electron Micrographs and ToF-SIMS for the Analysis of Organic Biomarkers in Mudstone. Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (Camellia sinensis. var. assamica). Interpolation of Imaging Mass Spectrometry Data by a Window-Based Adversarial Autoencoder Method. MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry. Photochemical and Collision-Induced Cross-Linking of Lys, Arg, and His to Nitrile Imines in Peptide Conjugate Ions in the Gas Phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1