Krzysztof Żamojć, Dan Milaș, Ola Grabowska, Dariusz Wyrzykowski, Magdalena Mańkowska, Karol Krzymiński
{"title":"Insight into the intercalation of N-substituted acridine-9-amines into DNA based on spectroscopic and calorimetric analysis.","authors":"Krzysztof Żamojć, Dan Milaș, Ola Grabowska, Dariusz Wyrzykowski, Magdalena Mańkowska, Karol Krzymiński","doi":"10.1016/j.bbagen.2024.130741","DOIUrl":null,"url":null,"abstract":"<p><p>The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA. These results suggest that all fluorescent substrates intercalate into the double helix of native DNA to varying degrees. The binding constants for the A9As/CT-DNA complexes (log(K<sub>A</sub>) were determined using various techniques in the range from 2.59 to 5.50). The thermodynamic parameters of A9As binding to DNA were obtained from ITC measurements (ΔG from - 7.51 to - 6.75 kcal·mol<sup>-1</sup>, ΔH from - 11.58 to - 3.83 kcal·mol<sup>-1</sup>, and TΔS from - 4.83 to 3.68 kcal·mol<sup>-1</sup>) and indicated that the formation of all the investigated A9As-DNA complexes is an enthalpy-driven process. The study also discusses the influence of the emitters' structure and electronic properties of substituents on intercalation efficiency. This knowledge serves as a guide for further research and offers directions for functionalising new acridines as potential reagents. It also provides the latest information on the ability of intercalation to DNA, which can be instrumental in studies on the mechanism of binding small aromatic molecules to DNA and can potentially contribute to new anticancer drug designs.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130741"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130741","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA. These results suggest that all fluorescent substrates intercalate into the double helix of native DNA to varying degrees. The binding constants for the A9As/CT-DNA complexes (log(KA) were determined using various techniques in the range from 2.59 to 5.50). The thermodynamic parameters of A9As binding to DNA were obtained from ITC measurements (ΔG from - 7.51 to - 6.75 kcal·mol-1, ΔH from - 11.58 to - 3.83 kcal·mol-1, and TΔS from - 4.83 to 3.68 kcal·mol-1) and indicated that the formation of all the investigated A9As-DNA complexes is an enthalpy-driven process. The study also discusses the influence of the emitters' structure and electronic properties of substituents on intercalation efficiency. This knowledge serves as a guide for further research and offers directions for functionalising new acridines as potential reagents. It also provides the latest information on the ability of intercalation to DNA, which can be instrumental in studies on the mechanism of binding small aromatic molecules to DNA and can potentially contribute to new anticancer drug designs.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.