Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Biomembranes Pub Date : 2024-12-16 DOI:10.1016/j.bbamem.2024.184404
Mark Lee, Candice M Armstrong, Aaron T Smith
{"title":"Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers.","authors":"Mark Lee, Candice M Armstrong, Aaron T Smith","doi":"10.1016/j.bbamem.2024.184404","DOIUrl":null,"url":null,"abstract":"<p><p>The acquisition of ferrous iron (Fe<sup>2+</sup>) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe<sup>2+</sup> acquisition mechanism is the ferrous iron transport (Feo) system. In V. cholerae, the Feo system comprises two cytosolic proteins (FeoA, FeoC) and a complex, polytopic transmembrane protein (FeoB) that is regulated by an N-terminal soluble domain (NFeoB) with promiscuous NTPase activity. While the soluble components of the Feo system have been frequently studied, very few reports exist on the intact membrane protein FeoB. Moreover, FeoB has been characterize almost exclusively in detergent micelles that can cause protein misfolding, disrupt protein oligomerization, and even dramatically alter protein function. As many of these characteristics of FeoB remain unclear, there is a critical need to characterize FeoB in a more native-like lipid environment. To address this unmet need, we employ styrene-maleic acid (SMA) copolymers to isolate and to characterize V. cholerae FeoB (VcFeoB) encapsulated by a styrene-maleic acid lipid particle (SMALP). In this work, we describe the development of a workflow for the expression and the purification of VcFeoB in a SMALP. Leveraging mass photometry, we explore the oligomerization of FeoB in a lipid bilayer and show that the VcFeoB-SMALP is mostly monomeric, consistent with our previous oligomerization observations in surfo. Finally, we characterize the NTPase activity of VcFeoB in the SMALP and in a detergent (DDM), revealing higher NTPase activity in the presence of the lipid bilayer. When taken together, this report represents the first characterization of any FeoB in a native-like lipid bilayer and provides a viable approach for the future structural characterization of FeoB.</p>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":" ","pages":"184404"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamem.2024.184404","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The acquisition of ferrous iron (Fe2+) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe2+ acquisition mechanism is the ferrous iron transport (Feo) system. In V. cholerae, the Feo system comprises two cytosolic proteins (FeoA, FeoC) and a complex, polytopic transmembrane protein (FeoB) that is regulated by an N-terminal soluble domain (NFeoB) with promiscuous NTPase activity. While the soluble components of the Feo system have been frequently studied, very few reports exist on the intact membrane protein FeoB. Moreover, FeoB has been characterize almost exclusively in detergent micelles that can cause protein misfolding, disrupt protein oligomerization, and even dramatically alter protein function. As many of these characteristics of FeoB remain unclear, there is a critical need to characterize FeoB in a more native-like lipid environment. To address this unmet need, we employ styrene-maleic acid (SMA) copolymers to isolate and to characterize V. cholerae FeoB (VcFeoB) encapsulated by a styrene-maleic acid lipid particle (SMALP). In this work, we describe the development of a workflow for the expression and the purification of VcFeoB in a SMALP. Leveraging mass photometry, we explore the oligomerization of FeoB in a lipid bilayer and show that the VcFeoB-SMALP is mostly monomeric, consistent with our previous oligomerization observations in surfo. Finally, we characterize the NTPase activity of VcFeoB in the SMALP and in a detergent (DDM), revealing higher NTPase activity in the presence of the lipid bilayer. When taken together, this report represents the first characterization of any FeoB in a native-like lipid bilayer and provides a viable approach for the future structural characterization of FeoB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
期刊最新文献
Differential insertion of arginine in saturated and unsaturated lipid vesicles. Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers. Identification of a sorting motif for Tspan3 to MHCII compartments in human B cells. Phase-separated cationic giant unilamellar vesicles as templates for the polymerization of tetraethyl orthosilicate (TEOS). Nanodomains enriched in arachidonic acid promote P2Y12 receptor oligomerization in the platelet plasma membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1