QTL mapping provides new insights into emamectin benzoate resistance in salmon lice, Lepeophtheirus salmonis.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2024-12-18 DOI:10.1186/s12864-024-11096-2
Armin Sturm, Greta Carmona-Antoñanzas, Joseph L Humble, Claudia Croton, Sally Boyd, Rapule Mphuti, John B Taggart, David I Bassett, Ross D Houston, Karim Gharbi, James E Bron, Michaël Bekaert
{"title":"QTL mapping provides new insights into emamectin benzoate resistance in salmon lice, Lepeophtheirus salmonis.","authors":"Armin Sturm, Greta Carmona-Antoñanzas, Joseph L Humble, Claudia Croton, Sally Boyd, Rapule Mphuti, John B Taggart, David I Bassett, Ross D Houston, Karim Gharbi, James E Bron, Michaël Bekaert","doi":"10.1186/s12864-024-11096-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L. salmonis, the molecular mechanisms of resistance remain to be elucidated. The aim of the present work was to obtain insights into potential EMB resistance mechanisms by identifying genetic and transcriptomic markers associated with EMB resistance.</p><p><strong>Results: </strong>Crosses were performed between EMB-susceptible and -resistant L. salmonis, sourced from two parental strains isolated in Scotland, producing fully pedigreed families. The EMB susceptibility of individual parasites was characterised using time-to-response bioassays. Parasites of two families were subjected to double digest restriction site-associated DNA sequencing (ddRAD-seq) for simultaneous discovery of single nucleotide polymorphisms (SNPs) and genotyping. Data analysis revealed that EMB resistance is associated with one quantitative trait locus (QTL) region on L. salmonis chromosome 5. Marker-trait association was confirmed by genotyping assays for 7 SNPs in two additional families. Furthermore, the transcriptome of male parasites of the EMB-susceptible and -resistant L. salmonis parental strains was assessed. Among eighteen sequences showing higher transcript expression in EMB-resistant as compared to drug-susceptible lice, the most strongly up-regulated gene is located in the above QTL region and shows high homology to β spectrin, a cytoskeleton protein that has roles in neuron architecture and function. Further genes differentially regulated in EMB-resistant lice include a glutathione S-transferase (GST), and genes coding for proteins with predicted roles in mitochondrial function, intracellular signalling or transcription.</p><p><strong>Conclusions: </strong>Major determinants of EMB resistance in L. salmonis are located on Chromosome 5. Resistance can be predicted using a limited number of genetic markers. Genes transcriptionally up-regulated in EMB resistant parasites include a β spectrin, a cytoskeletal protein with still incompletely understood roles in neuron structure and function, as well as glutathione S-transferase, an enzyme with potential roles in the biochemical defence against toxicants.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1212"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11096-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L. salmonis, the molecular mechanisms of resistance remain to be elucidated. The aim of the present work was to obtain insights into potential EMB resistance mechanisms by identifying genetic and transcriptomic markers associated with EMB resistance.

Results: Crosses were performed between EMB-susceptible and -resistant L. salmonis, sourced from two parental strains isolated in Scotland, producing fully pedigreed families. The EMB susceptibility of individual parasites was characterised using time-to-response bioassays. Parasites of two families were subjected to double digest restriction site-associated DNA sequencing (ddRAD-seq) for simultaneous discovery of single nucleotide polymorphisms (SNPs) and genotyping. Data analysis revealed that EMB resistance is associated with one quantitative trait locus (QTL) region on L. salmonis chromosome 5. Marker-trait association was confirmed by genotyping assays for 7 SNPs in two additional families. Furthermore, the transcriptome of male parasites of the EMB-susceptible and -resistant L. salmonis parental strains was assessed. Among eighteen sequences showing higher transcript expression in EMB-resistant as compared to drug-susceptible lice, the most strongly up-regulated gene is located in the above QTL region and shows high homology to β spectrin, a cytoskeleton protein that has roles in neuron architecture and function. Further genes differentially regulated in EMB-resistant lice include a glutathione S-transferase (GST), and genes coding for proteins with predicted roles in mitochondrial function, intracellular signalling or transcription.

Conclusions: Major determinants of EMB resistance in L. salmonis are located on Chromosome 5. Resistance can be predicted using a limited number of genetic markers. Genes transcriptionally up-regulated in EMB resistant parasites include a β spectrin, a cytoskeletal protein with still incompletely understood roles in neuron structure and function, as well as glutathione S-transferase, an enzyme with potential roles in the biochemical defence against toxicants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Genomic strategies to facilitate breeding for increased β-Glucan content in oat (Avena sativa L.). Characterization of chemosensory genes in the subterranean pest Gryllotalpa Orientalis based on genome assembly and transcriptome comparison. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1