Evaluation of prediction errors in nine intraocular lens calculation formulas using an explainable machine learning model.

IF 1.7 4区 医学 Q3 OPHTHALMOLOGY BMC Ophthalmology Pub Date : 2024-12-19 DOI:10.1186/s12886-024-03801-2
Richul Oh, Joo Youn Oh, Hyuk Jin Choi, Mee Kum Kim, Chang Ho Yoon
{"title":"Evaluation of prediction errors in nine intraocular lens calculation formulas using an explainable machine learning model.","authors":"Richul Oh, Joo Youn Oh, Hyuk Jin Choi, Mee Kum Kim, Chang Ho Yoon","doi":"10.1186/s12886-024-03801-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The purpose of the study was to evaluate the relationship between prediction errors (PEs) and ocular biometric variables in cataract surgery using nine intraocular lens (IOL) formulas with an explainable machine learning model.</p><p><strong>Methods: </strong>We retrospectively analyzed the medical records of consecutive patients who underwent standard cataract surgery with a Tecnis 1-piece IOL (ZCB00) at a single center. We calculated predicted refraction using the following IOL formulas: Barrett Universal II (BUII), Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, Kane, SRK/T, and PEARL-DGS. We used a LightGBM-based machine learning model to evaluate the explanatory power of ocular biometric variables for PEs and assessed the relationship between PEs and ocular biometric variables using Shapley additive explanation (SHAP) values.</p><p><strong>Results: </strong>We included 1,430 eyes of 1,430 patients in the analysis. The SRK/T formula exhibited the highest R<sup>2</sup> value (0.231) in the test set among the machine-learning models. In contrast, the Kane formula exhibited the lowest R<sup>2</sup> value (0.021) in the test set, indicating that the model could explain only 2.1% of the PEs using ocular biometric variables. BUII, Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, PEARL-DGS formulas exhibited R<sup>2</sup> values of 0.046, 0.025, 0.037, 0.194, 0.106, 0.191, and 0.058, respectively. Lower R<sup>2</sup> values for the IOL formulas corresponded to smaller SHAP values.</p><p><strong>Conclusion: </strong>The explanatory power of currently used ocular biometric variables for PEs in new-generation formulas such as BUII, Cooke K6, EVO V2.0 and Kane is low, implying that these formulas are already optimized. Therefore, the introduction of new ocular biometric variables into IOL calculation formulas could potentially reduce PEs, enhancing the accuracy of surgical outcomes.</p>","PeriodicalId":9058,"journal":{"name":"BMC Ophthalmology","volume":"24 1","pages":"531"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12886-024-03801-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The purpose of the study was to evaluate the relationship between prediction errors (PEs) and ocular biometric variables in cataract surgery using nine intraocular lens (IOL) formulas with an explainable machine learning model.

Methods: We retrospectively analyzed the medical records of consecutive patients who underwent standard cataract surgery with a Tecnis 1-piece IOL (ZCB00) at a single center. We calculated predicted refraction using the following IOL formulas: Barrett Universal II (BUII), Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, Kane, SRK/T, and PEARL-DGS. We used a LightGBM-based machine learning model to evaluate the explanatory power of ocular biometric variables for PEs and assessed the relationship between PEs and ocular biometric variables using Shapley additive explanation (SHAP) values.

Results: We included 1,430 eyes of 1,430 patients in the analysis. The SRK/T formula exhibited the highest R2 value (0.231) in the test set among the machine-learning models. In contrast, the Kane formula exhibited the lowest R2 value (0.021) in the test set, indicating that the model could explain only 2.1% of the PEs using ocular biometric variables. BUII, Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, PEARL-DGS formulas exhibited R2 values of 0.046, 0.025, 0.037, 0.194, 0.106, 0.191, and 0.058, respectively. Lower R2 values for the IOL formulas corresponded to smaller SHAP values.

Conclusion: The explanatory power of currently used ocular biometric variables for PEs in new-generation formulas such as BUII, Cooke K6, EVO V2.0 and Kane is low, implying that these formulas are already optimized. Therefore, the introduction of new ocular biometric variables into IOL calculation formulas could potentially reduce PEs, enhancing the accuracy of surgical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用可解释的机器学习模型评估九个人工晶状体计算公式的预测误差。
背景:本研究的目的是通过可解释的机器学习模型,利用9种人工晶状体(IOL)公式,评估白内障手术中预测误差(PEs)与眼部生物特征变量之间的关系。方法:我们回顾性分析了连续接受单中心Tecnis 1片人工晶体(ZCB00)标准白内障手术的患者的病历。我们使用以下人工晶状体公式计算预测屈光:Barrett Universal II (BUII)、Cooke K6、EVO V2.0、Haigis、Hoffer QST、Holladay 1、Kane、SRK/T和PEARL-DGS。我们使用基于lightgbm的机器学习模型来评估PEs的眼部生物特征变量的解释能力,并使用Shapley加性解释(SHAP)值评估PEs与眼部生物特征变量之间的关系。结果:我们纳入了1430例患者的1430只眼睛。在机器学习模型中,SRK/T公式的R2值最高,为0.231。相比之下,Kane公式在检验集中表现出最低的R2值(0.021),表明该模型只能解释2.1%的pe使用眼部生物特征变量。BUII、Cooke K6、EVO V2.0、Haigis、Hoffer QST、Holladay 1、PEARL-DGS公式的R2分别为0.046、0.025、0.037、0.194、0.106、0.191和0.058。IOL公式的R2值越低,SHAP值越小。结论:BUII、Cooke K6、EVO V2.0、Kane等新一代配方中目前使用的PEs眼部生物特征变量解释力较低,说明这些配方已经进行了优化。因此,在人工晶状体计算公式中引入新的眼部生物特征变量可能会降低PEs,提高手术结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Ophthalmology
BMC Ophthalmology OPHTHALMOLOGY-
CiteScore
3.40
自引率
5.00%
发文量
441
审稿时长
6-12 weeks
期刊介绍: BMC Ophthalmology is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of eye disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Comparing structural and vascular parameters between advanced pseudoexfoliation glaucoma and primary open angle glaucoma using optical coherence tomography angiography. Phaeoisaria sp. fungal keratitis resembling corneal rust residue: a case report. Quantitative evaluation of the wide-field fundus photographs in eyes with severe stage 3 and stage 4A retinopathy of prematurity. Incidence of ophthalmic manifestations in congenital cytomegalovirus (CMV). Increased aqueous humor levels of endothelin-1 in patients with open angle glaucoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1