Mutations in AMBRA1 aggravate β-thalassemia by impairing autophagy-mediated clearance of free α-globin.

IF 21 1区 医学 Q1 HEMATOLOGY Blood Pub Date : 2024-12-18 DOI:10.1182/blood.2023022688
Yong Long, Qianqian Zhang, Ling Ling, Yuan Zhuang, Xiaolei Wei, Haoyang Huang, Zhanping Lu, Yushan Huang, Xianming Chen, Yuhua Ye, Xiaoqin Feng, Haokun Hao Zhang, Binbin Huang, Yueyan Huang, Yidan Liang, Mingyan Fang, Yukio Nakamura, Bin Lin, Xinhua Zhang, Daru Lu, Xin Jin, Xiangmin Xu
{"title":"Mutations in AMBRA1 aggravate β-thalassemia by impairing autophagy-mediated clearance of free α-globin.","authors":"Yong Long, Qianqian Zhang, Ling Ling, Yuan Zhuang, Xiaolei Wei, Haoyang Huang, Zhanping Lu, Yushan Huang, Xianming Chen, Yuhua Ye, Xiaoqin Feng, Haokun Hao Zhang, Binbin Huang, Yueyan Huang, Yidan Liang, Mingyan Fang, Yukio Nakamura, Bin Lin, Xinhua Zhang, Daru Lu, Xin Jin, Xiangmin Xu","doi":"10.1182/blood.2023022688","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear. In this study, we systematically investigated the relationship between variants in ATGs and disease phenotypes in a cohort of 1,022 patients with β-thalassemia, identifying four missense mutations in the autophagy and beclin 1 regulator 1 (AMBRA1) gene. Disruption of the Ambra1 gene in β-thalassemic mice was found to reduce autophagic clearance of α-globin in red blood cell precursors, exacerbating disease phenotypes. Functional characterization of the AMBRA1 gene and these mutations in patient-derived CD34+ cells, edited HUDEP-2 cells, and engineered HUDEP-2 β-thalassemic cells confirmed that AMBRA1 facilitates the autophagic clearance of free α-globin in human erythroid cells. Functional studies demonstrated that AMBRA1 missense mutants destabilize ULK1 protein, inhibit LC3 lipidation, and subsequently hinder autophagic flux, leading to increased α-globin deposition. Additionally, these mutations were associated with erythrotoxic effects in vitro, including increased intracellular reactive oxygen species levels, higher apoptosis rates, and impaired erythroid differentiation and maturation. This study sheds light on the molecular association between mutations in ATGs and the exacerbation of β-thalassemia, highlighting the potential role of the AMBRA1 gene as a promising diagnostic and therapeutic target for β-hemoglobinopathies.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2023022688","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear. In this study, we systematically investigated the relationship between variants in ATGs and disease phenotypes in a cohort of 1,022 patients with β-thalassemia, identifying four missense mutations in the autophagy and beclin 1 regulator 1 (AMBRA1) gene. Disruption of the Ambra1 gene in β-thalassemic mice was found to reduce autophagic clearance of α-globin in red blood cell precursors, exacerbating disease phenotypes. Functional characterization of the AMBRA1 gene and these mutations in patient-derived CD34+ cells, edited HUDEP-2 cells, and engineered HUDEP-2 β-thalassemic cells confirmed that AMBRA1 facilitates the autophagic clearance of free α-globin in human erythroid cells. Functional studies demonstrated that AMBRA1 missense mutants destabilize ULK1 protein, inhibit LC3 lipidation, and subsequently hinder autophagic flux, leading to increased α-globin deposition. Additionally, these mutations were associated with erythrotoxic effects in vitro, including increased intracellular reactive oxygen species levels, higher apoptosis rates, and impaired erythroid differentiation and maturation. This study sheds light on the molecular association between mutations in ATGs and the exacerbation of β-thalassemia, highlighting the potential role of the AMBRA1 gene as a promising diagnostic and therapeutic target for β-hemoglobinopathies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Blood
Blood 医学-血液学
CiteScore
23.60
自引率
3.90%
发文量
955
审稿时长
1 months
期刊介绍: Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.
期刊最新文献
DLBCL: who is high risk and how should treatment be optimized? Peripheral T-cell lymphoma: are all patients high risk? Emapalumab therapy for hemophagocytic lymphohistiocytosis before reduced-intensity transplantation improves chimerism. Prognostic impact of cytogenetic abnormalities detected by FISH in AL amyloidosis with daratumumab-based frontline therapy. GSDME-mediated pyroptosis contributes to chemotherapy-induced platelet hyperactivity and thrombotic potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1