Variation in plasmid conjugation among non-typhoidal Salmonella enterica serovars.

IF 1.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Canadian journal of microbiology Pub Date : 2024-12-18 DOI:10.1139/cjm-2024-0164
Anna Laidlaw, Madeleine Blondin-Brosseau, Julie A Shay, Forest Dussault, Mary Rao, Nicholas Petronella, Sandeep Tamber
{"title":"Variation in plasmid conjugation among non-typhoidal Salmonella enterica serovars.","authors":"Anna Laidlaw, Madeleine Blondin-Brosseau, Julie A Shay, Forest Dussault, Mary Rao, Nicholas Petronella, Sandeep Tamber","doi":"10.1139/cjm-2024-0164","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugation is a complex phenomenon involving multiple plasmid, bacterial, and environmental factors. Here we describe an IncI1 plasmid encoding multidrug antibiotic resistance to aminoglycosides, sulfonamides, and third generation cephalosporins. This plasmid is widespread geographically and among One Health animal, human, and environmental sectors. We present data on the transmissibility of this plasmid from S. enterica ser. Kentucky into forty strains of S. enterica (10 strains each from serovars Enteritidis, Heidelberg, Infantis, and Typhimurium). Thirty-seven out of forty strains were able to take up the plasmid. Rates of conjugation were variable between strains ranging from 10^-8 to 10^-4. Overall, serovars Enteritidis and Typhimurium demonstrated the highest rates of conjugation, followed by Heidelberg, and then Infantis. No relationships were observed between the recipient cell surface and rate of conjugation. Recipient cell numbers correlated positively with conjugation rate and strains with high conjugation rates had marginally but significantly higher growth parameters compared to strains that took up the plasmid at lower frequencies. Environmental conditions known to impact cell growth such as temperature, nutrient availability, and the presence of antibiotics had a modulating effect on conjugation. Collectively, these results will further understanding of plasmid transmission dynamics in Salmonella which is a critical first step towards the development of mitigation strategies.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0164","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugation is a complex phenomenon involving multiple plasmid, bacterial, and environmental factors. Here we describe an IncI1 plasmid encoding multidrug antibiotic resistance to aminoglycosides, sulfonamides, and third generation cephalosporins. This plasmid is widespread geographically and among One Health animal, human, and environmental sectors. We present data on the transmissibility of this plasmid from S. enterica ser. Kentucky into forty strains of S. enterica (10 strains each from serovars Enteritidis, Heidelberg, Infantis, and Typhimurium). Thirty-seven out of forty strains were able to take up the plasmid. Rates of conjugation were variable between strains ranging from 10^-8 to 10^-4. Overall, serovars Enteritidis and Typhimurium demonstrated the highest rates of conjugation, followed by Heidelberg, and then Infantis. No relationships were observed between the recipient cell surface and rate of conjugation. Recipient cell numbers correlated positively with conjugation rate and strains with high conjugation rates had marginally but significantly higher growth parameters compared to strains that took up the plasmid at lower frequencies. Environmental conditions known to impact cell growth such as temperature, nutrient availability, and the presence of antibiotics had a modulating effect on conjugation. Collectively, these results will further understanding of plasmid transmission dynamics in Salmonella which is a critical first step towards the development of mitigation strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
71
审稿时长
2.5 months
期刊介绍: Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
期刊最新文献
Tolerance mechanisms and molecular epidemiology of reduced susceptibility to chlorhexidine digluconate in different species of the Acinetobacter baumannii complex. Variation in plasmid conjugation among non-typhoidal Salmonella enterica serovars. Correction: Characterization and whole-genome sequencing of an extreme arsenic tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Comparative mitogenomics of Leptographium procerum, Leptographium terebrantis and Leptographium wingfieldii, an invasive fungal species in Canadian forests. Lavandula angustifolia oil induces oxidative stress, stiffening of membranes, and cell wall in Cryptococcus spp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1