{"title":"Regulation of SR and mitochondrial Ca<sup>2+</sup> signaling by L-type Ca<sup>2+</sup> channels and Na/Ca exchanger in hiPSC-CMs.","authors":"Xiao-Hua Zhang, Martin Morad","doi":"10.1016/j.ceca.2024.102985","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale & methods: </strong>While signaling of cardiac SR by surface membrane proteins (I<sub>Ca</sub> & I<sub>NCX</sub>) is well studied, the regulation of mitochondrial Ca<sup>2+</sup> by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.</p><p><strong>Results: </strong>In voltage-clamped and TIRF-imaged cardiomyocytes, low Na<sup>+</sup> induced SR Ca<sup>2+</sup> release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca<sup>2+</sup> contribution to low Na<sup>+</sup> triggered SR Ca<sup>2+</sup>release. Even though low Na<sup>+</sup>- or caffeine-triggered SR Ca<sup>2+</sup> release activated global mitochondrial Ca<sup>2+</sup> uptake, focal mitochondrial Ca<sup>2+</sup> signals varied in kinetics and magnitude, showing uptake or release of calcium, depending on cellular location of mitochondria. In spontaneously pacing cells, sustained caffeine exposures depleted the SR Ca<sup>2+</sup> content activating mitochondrial Ca<sup>2+</sup> uptake followed by sustained mitochondrial pacing. Spontaneous hiPSCCMs pacing was strongly suppressed by L-type calcium channels blockers, but not by inhibiting SERCA2a by CPA.</p><p><strong>Conclusion: </strong>Spontaneous hiPSCCMs pacing is triggered by influx of calcium through L-type Ca<sup>2+</sup> channel that gates the release of SR pools supplemented by NCX-mediated mitochondrial calcium contribution.</p>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"125 ","pages":"102985"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ceca.2024.102985","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale & methods: While signaling of cardiac SR by surface membrane proteins (ICa & INCX) is well studied, the regulation of mitochondrial Ca2+ by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.
Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na+ induced SR Ca2+ release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca2+ contribution to low Na+ triggered SR Ca2+release. Even though low Na+- or caffeine-triggered SR Ca2+ release activated global mitochondrial Ca2+ uptake, focal mitochondrial Ca2+ signals varied in kinetics and magnitude, showing uptake or release of calcium, depending on cellular location of mitochondria. In spontaneously pacing cells, sustained caffeine exposures depleted the SR Ca2+ content activating mitochondrial Ca2+ uptake followed by sustained mitochondrial pacing. Spontaneous hiPSCCMs pacing was strongly suppressed by L-type calcium channels blockers, but not by inhibiting SERCA2a by CPA.
Conclusion: Spontaneous hiPSCCMs pacing is triggered by influx of calcium through L-type Ca2+ channel that gates the release of SR pools supplemented by NCX-mediated mitochondrial calcium contribution.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes