Dual functions of silibinin in attenuating aortic dissection via regulating iron homeostasis and endoplasmic reticulum stress against ferroptosis.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-12-18 DOI:10.1038/s41419-024-07309-x
Zhen Qi, Qiu-Guo Wang, Meng-Xi Huang, Yi-Fan Zeng, Jing-Yu Li, Zhi-Cheng Duan, Ling Tan, Hao Tang
{"title":"Dual functions of silibinin in attenuating aortic dissection via regulating iron homeostasis and endoplasmic reticulum stress against ferroptosis.","authors":"Zhen Qi, Qiu-Guo Wang, Meng-Xi Huang, Yi-Fan Zeng, Jing-Yu Li, Zhi-Cheng Duan, Ling Tan, Hao Tang","doi":"10.1038/s41419-024-07309-x","DOIUrl":null,"url":null,"abstract":"<p><p>Aortic dissection (AD) poses a significant threat to cardiovascular health globally, yet its underlying mechanisms remain elusive. Smooth muscle cells death and phenotypic switching are critically important pathological processes in AD. Currently, no pharmacological therapies have proven effective in managing AD. This study aims to elucidate the involvement of ferroptosis in AD progression and explore ferroptosis inhibition as a potential therapeutic approach for AD management. Elevated expression of ferroptosis markers (HMOX1, ACSL4, and 4-HNE) was observed in AD patients and β-Aminopropionitrile (BAPN)-induced mice. In vivo administration of silibinin (SIL) attenuated aortic dilation, inflammation, mitochondrial injury, and ferroptosis. SIL treatment enhanced cell viability and mitochondrial function while reducing reactive oxygen species (ROS) generation and mitigating ferroptosis in primary human aortic smooth muscle cells (HASMCs) induced by RSL3 or IKE. Mechanistically, RNA-sequencing analysis identified dysregulation of iron homeostasis and endoplasmic reticulum stress, which were modulated by SIL. Molecular docking, cellular thermal shift assay, drug affinity responsive target stability, and surface plasmon resonance analysis confirmed HMOX1 as a direct target of SIL, highlighting its role in modulating iron homeostasis. Moreover, NCT-502, a PHGDH inhibitor, reversed the protective effect of SIL in RSL3-induced HASMCs. Conversely, 4-PBA and ZnPP demonstrate a facilitative role. This suggests that SIL plays a crucial role in ferroptosis development by modulating iron homeostasis and endoplasmic reticulum stress-mediated serine biosynthesis, both in vitro and in vivo. Iron homeostasis and endoplasmic reticulum stress of HASMCs drive the development of aortic dissection. These findings unveil a novel role of SIL in mitigating ferroptosis in HASMCs, offering a promising therapeutic avenue for treating AD.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"900"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07309-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aortic dissection (AD) poses a significant threat to cardiovascular health globally, yet its underlying mechanisms remain elusive. Smooth muscle cells death and phenotypic switching are critically important pathological processes in AD. Currently, no pharmacological therapies have proven effective in managing AD. This study aims to elucidate the involvement of ferroptosis in AD progression and explore ferroptosis inhibition as a potential therapeutic approach for AD management. Elevated expression of ferroptosis markers (HMOX1, ACSL4, and 4-HNE) was observed in AD patients and β-Aminopropionitrile (BAPN)-induced mice. In vivo administration of silibinin (SIL) attenuated aortic dilation, inflammation, mitochondrial injury, and ferroptosis. SIL treatment enhanced cell viability and mitochondrial function while reducing reactive oxygen species (ROS) generation and mitigating ferroptosis in primary human aortic smooth muscle cells (HASMCs) induced by RSL3 or IKE. Mechanistically, RNA-sequencing analysis identified dysregulation of iron homeostasis and endoplasmic reticulum stress, which were modulated by SIL. Molecular docking, cellular thermal shift assay, drug affinity responsive target stability, and surface plasmon resonance analysis confirmed HMOX1 as a direct target of SIL, highlighting its role in modulating iron homeostasis. Moreover, NCT-502, a PHGDH inhibitor, reversed the protective effect of SIL in RSL3-induced HASMCs. Conversely, 4-PBA and ZnPP demonstrate a facilitative role. This suggests that SIL plays a crucial role in ferroptosis development by modulating iron homeostasis and endoplasmic reticulum stress-mediated serine biosynthesis, both in vitro and in vivo. Iron homeostasis and endoplasmic reticulum stress of HASMCs drive the development of aortic dissection. These findings unveil a novel role of SIL in mitigating ferroptosis in HASMCs, offering a promising therapeutic avenue for treating AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水飞蓟宾通过调节铁稳态和内质网应激抑制铁下垂减轻主动脉夹层的双重功能。
主动脉夹层(AD)是全球心血管健康的重大威胁,但其潜在机制尚不清楚。平滑肌细胞死亡和表型转换是AD的重要病理过程。目前,还没有药物疗法被证明对阿尔茨海默病有效。本研究旨在阐明铁下垂在AD进展中的作用,并探讨抑制铁下垂作为AD管理的潜在治疗方法。在AD患者和β-氨基丙腈(BAPN)诱导的小鼠中,观察到铁下垂标志物(HMOX1、ACSL4和4-HNE)的表达升高。体内给药水飞蓟宾(SIL)可减轻主动脉扩张、炎症、线粒体损伤和铁下垂。SIL处理可提高细胞活力和线粒体功能,同时减少活性氧(ROS)的产生,减轻RSL3或IKE诱导的原发性人主动脉平滑肌细胞(HASMCs)的铁下垂。在机制上,rna测序分析发现铁稳态失调和内质网应激,这是由SIL调节的。分子对接、细胞热移实验、药物亲和响应靶标稳定性和表面等离子体共振分析证实HMOX1是SIL的直接靶标,突出了其在调节铁稳态中的作用。此外,PHGDH抑制剂NCT-502逆转了SIL对rsl3诱导的HASMCs的保护作用。相反,4-PBA和ZnPP表现出促进作用。这表明,在体内和体外,SIL通过调节铁稳态和内质网应激介导的丝氨酸生物合成,在铁下垂的发展中起着至关重要的作用。血管内皮细胞的铁稳态和内质网应激驱动主动脉夹层的发展。这些发现揭示了SIL在减轻HASMCs铁下垂中的新作用,为治疗AD提供了一个有希望的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1