Minimizing DNA trapping while maintaining activity inhibition via selective PARP1 degrader.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-12-18 DOI:10.1038/s41419-024-07277-2
Li Chen, Yahui Zou, Renhong Sun, Mei Huang, Xiaotong Zhu, Xiao Tang, Xiaobao Yang, Dake Li, Gaofeng Fan, Yu Wang
{"title":"Minimizing DNA trapping while maintaining activity inhibition via selective PARP1 degrader.","authors":"Li Chen, Yahui Zou, Renhong Sun, Mei Huang, Xiaotong Zhu, Xiao Tang, Xiaobao Yang, Dake Li, Gaofeng Fan, Yu Wang","doi":"10.1038/s41419-024-07277-2","DOIUrl":null,"url":null,"abstract":"<p><p>Poly (ADP-ribose) polymerase 1 (PARP1) catalyzes poly (ADP) ribosylation reaction, one of the essential post-translational modifications of proteins in eukaryotic cells. Given that PARP1 inhibition can lead to synthetic lethality in cells with compromised homologous recombination, this enzyme has been identified as a potent target for anti-cancer therapeutics. However, the clinical application of existing PARP1 inhibitors is restrained by side effects associated with DNA trapping and off-target effects, highlighting the need for improved therapeutic strategies. By integrating protein degradation technology, we synthesized a PROTAC molecule 180055 based on the Rucaparib junction and VHL ligand, which efficiently and selectively degraded PARP1 and inhibited PARP1 enzyme activity without a noticeable DNA trapping effect. Furthermore, 180055 kills tumor cells carrying BRCA mutations with a minor impact on the growth of normal cells both in vitro and in vivo. This suggests that 180055 is a PARP1-degrading compound with excellent pharmacological efficacy and extremely high biological safety that deserves further exploration and validation in clinical trials.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"898"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07277-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly (ADP-ribose) polymerase 1 (PARP1) catalyzes poly (ADP) ribosylation reaction, one of the essential post-translational modifications of proteins in eukaryotic cells. Given that PARP1 inhibition can lead to synthetic lethality in cells with compromised homologous recombination, this enzyme has been identified as a potent target for anti-cancer therapeutics. However, the clinical application of existing PARP1 inhibitors is restrained by side effects associated with DNA trapping and off-target effects, highlighting the need for improved therapeutic strategies. By integrating protein degradation technology, we synthesized a PROTAC molecule 180055 based on the Rucaparib junction and VHL ligand, which efficiently and selectively degraded PARP1 and inhibited PARP1 enzyme activity without a noticeable DNA trapping effect. Furthermore, 180055 kills tumor cells carrying BRCA mutations with a minor impact on the growth of normal cells both in vitro and in vivo. This suggests that 180055 is a PARP1-degrading compound with excellent pharmacological efficacy and extremely high biological safety that deserves further exploration and validation in clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小化DNA捕获,同时通过选择性PARP1降解维持活性抑制。
聚(ADP)核糖聚合酶1 (PARP1)催化聚(ADP)核糖基化反应,是真核细胞中重要的蛋白质翻译后修饰之一。鉴于PARP1抑制可导致同源重组受损细胞的合成致死,该酶已被确定为抗癌治疗的有效靶点。然而,现有PARP1抑制剂的临床应用受到与DNA捕获和脱靶效应相关的副作用的限制,这突出了改进治疗策略的必要性。结合蛋白降解技术,我们合成了基于Rucaparib结和VHL配体的PROTAC分子180055,该分子能够高效、选择性地降解PARP1,抑制PARP1酶活性,且无明显的DNA诱捕效应。此外,180055杀死携带BRCA突变的肿瘤细胞,对体内和体外正常细胞的生长影响很小。这说明180055是一种具有优异药理功效和极高生物安全性的parp1降解化合物,值得在临床试验中进一步探索和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
H2O2
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1