Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2024-12-16 DOI:10.1029/2023GB007926
H. C. Westbrook, A. Bourbonnais, C. C. M. Manning, J.-É. Tremblay, M. M. M. Ahmed, B. Else, J. Granger
{"title":"Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data","authors":"H. C. Westbrook,&nbsp;A. Bourbonnais,&nbsp;C. C. M. Manning,&nbsp;J.-É. Tremblay,&nbsp;M. M. M. Ahmed,&nbsp;B. Else,&nbsp;J. Granger","doi":"10.1029/2023GB007926","DOIUrl":null,"url":null,"abstract":"<p>Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian Arctic Archipelago and Baffin Bay due to increased discharge from glacial meltwater and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters, dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity in Arctic ecosystems. Yet, few DON data for this region exist. We measured concentrations and stable isotope ratios of DON (δ<sup>15</sup>N) and nitrate (NO<sub>3</sub><sup>−</sup>; δ<sup>15</sup>N and δ<sup>18</sup>O) to investigate the sources and cycling of dissolved nitrogen in regional rivers and marine samples collected in the Eastern Canadian Arctic Archipelago and Baffin Bay during the summer of 2019. The isotopic signatures of NO<sub>3</sub><sup>−</sup> in rivers could be reproduced in a steady state isotopic model by invoking mixing between atmospheric NO<sub>3</sub><sup>−</sup> and nitrified ammonium as well as NO<sub>3</sub><sup>−</sup> assimilation by phytoplankton. DON concentrations were low in most rivers (≤4.9 μmol N L<sup>−1</sup>), whereas the concentrations (0.54–12 μmol N L<sup>−1</sup>) and δ<sup>15</sup>N of DON (−0.71–9.6‰) at the sea surface were variable among stations, suggesting dynamic cycling and/or distinctive sources. In two regions with high chlorophyll-a, DON concentrations were inversely correlated with chlorophyll-a and the δ<sup>15</sup>N of DON, suggesting net DON consumption in localized phytoplankton blooms. We derived an isotope effect of 6.9‰ for DON consumption. Our data helps establish a baseline to assess future changes in the nutrient regime for this climate-sensitive region.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007926","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian Arctic Archipelago and Baffin Bay due to increased discharge from glacial meltwater and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters, dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity in Arctic ecosystems. Yet, few DON data for this region exist. We measured concentrations and stable isotope ratios of DON (δ15N) and nitrate (NO3; δ15N and δ18O) to investigate the sources and cycling of dissolved nitrogen in regional rivers and marine samples collected in the Eastern Canadian Arctic Archipelago and Baffin Bay during the summer of 2019. The isotopic signatures of NO3 in rivers could be reproduced in a steady state isotopic model by invoking mixing between atmospheric NO3 and nitrified ammonium as well as NO3 assimilation by phytoplankton. DON concentrations were low in most rivers (≤4.9 μmol N L−1), whereas the concentrations (0.54–12 μmol N L−1) and δ15N of DON (−0.71–9.6‰) at the sea surface were variable among stations, suggesting dynamic cycling and/or distinctive sources. In two regions with high chlorophyll-a, DON concentrations were inversely correlated with chlorophyll-a and the δ15N of DON, suggesting net DON consumption in localized phytoplankton blooms. We derived an isotope effect of 6.9‰ for DON consumption. Our data helps establish a baseline to assess future changes in the nutrient regime for this climate-sensitive region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data System-Wide Greenhouse Gas Emissions From Mountain Reservoirs Draining Permafrost Catchments on the Qinghai-Tibet Plateau Interactions Between Multiple Physical Particle Injection Pumps in the Southern Ocean Issue Information Spatial Variability of Dissolved Cobalt in the Indian Ocean Waters: Contrasting Behavior in the Arabian Sea, the Bay of Bengal and the Southern Sector of the Indian Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1