A hypothesis of nucleosome evolution considering mutational analysis.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genetic systems Pub Date : 2024-12-19 DOI:10.1266/ggs.24-00143
Yu Nakabayashi, Masayuki Seki
{"title":"A hypothesis of nucleosome evolution considering mutational analysis.","authors":"Yu Nakabayashi, Masayuki Seki","doi":"10.1266/ggs.24-00143","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleosomes are complexes of DNA and histone proteins that form the basis of eukaryotic chromatin. Eukaryotic histones are descended from Archaean homologs; however, how this occurred remains unclear. Our previous genetic analysis on the budding yeast nucleosome identified 26 histone residues conserved between S. cerevisiae and T. brucei; 15 that are lethal when mutated and 11 that are synthetically lethal with deletion of the FEN1 nuclease. These residues are partially conserved in nucleosomes of a variety of giant viruses, allowing us to follow the route by which they were established in the LECA (Last Eukaryote Common Ancestor). We analyzed yeast nucleosome genetic data to generate a model for the emergence of the eukaryotic nucleosome. In our model, histone H2B-H2A and H4-H3 doublets found in giant virus nucleosomes facilitated the formation of the acidic patch surface and nucleosome entry sites of the eukaryotic nucleosome, respectively. Splitting of the H2B-H2A doublet resulted in the H2A variant, H2A.Z., and subsequent splitting of the H4-H3 doublet led to a eukaryotic specific domain required for chromatin binding of H2A.Z. We propose that the LECA emerged when the newly-split H3 N-terminal horizontally acquired a common N-tail found in extinct pre-LECA lineages and some extant giant viruses. This hypothesis predicts that the emergence of the H3 variant CENP-A and establishment of CENP-A-dependent chromosome segregation occurred after the emergence of the LECA, implying that the root of all eukaryotes is assigned within Euglenida.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.24-00143","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleosomes are complexes of DNA and histone proteins that form the basis of eukaryotic chromatin. Eukaryotic histones are descended from Archaean homologs; however, how this occurred remains unclear. Our previous genetic analysis on the budding yeast nucleosome identified 26 histone residues conserved between S. cerevisiae and T. brucei; 15 that are lethal when mutated and 11 that are synthetically lethal with deletion of the FEN1 nuclease. These residues are partially conserved in nucleosomes of a variety of giant viruses, allowing us to follow the route by which they were established in the LECA (Last Eukaryote Common Ancestor). We analyzed yeast nucleosome genetic data to generate a model for the emergence of the eukaryotic nucleosome. In our model, histone H2B-H2A and H4-H3 doublets found in giant virus nucleosomes facilitated the formation of the acidic patch surface and nucleosome entry sites of the eukaryotic nucleosome, respectively. Splitting of the H2B-H2A doublet resulted in the H2A variant, H2A.Z., and subsequent splitting of the H4-H3 doublet led to a eukaryotic specific domain required for chromatin binding of H2A.Z. We propose that the LECA emerged when the newly-split H3 N-terminal horizontally acquired a common N-tail found in extinct pre-LECA lineages and some extant giant viruses. This hypothesis predicts that the emergence of the H3 variant CENP-A and establishment of CENP-A-dependent chromosome segregation occurred after the emergence of the LECA, implying that the root of all eukaryotes is assigned within Euglenida.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑突变分析的核小体进化假说。
核小体是DNA和组蛋白的复合物,构成真核染色质的基础。真核组蛋白起源于太古代同系物;然而,这是如何发生的仍不清楚。我们之前对出芽酵母核小体的遗传分析发现26个组蛋白残基在酿酒酵母和布鲁氏杆菌之间保守;其中15种在突变时是致命的,11种在FEN1核酸酶缺失时是合成致命的。这些残基在各种巨型病毒的核小体中部分保守,使我们能够遵循它们在LECA(最后的真核生物共同祖先)中建立的路线。我们分析了酵母核小体遗传数据,以生成真核核小体出现的模型。在我们的模型中,在巨型病毒核小体中发现的组蛋白H2B-H2A和H4-H3双体分别促进了真核核小体的酸性斑块表面和核小体进入位点的形成。H2B-H2A双链的分裂产生H2A变异H2A. z。,随后H4-H3双偶体的分裂导致haa - z染色质结合所需的真核特异性结构域。我们认为,当新分裂的H3 n -末端水平获得在灭绝的前LECA谱系和一些现存的巨型病毒中发现的共同n -尾时,LECA就出现了。这一假说预测,H3变异体CENP-A的出现和依赖于CENP-A的染色体分离的建立发生在LECA出现之后,这意味着所有真核生物的根都分配在Euglenida内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes & genetic systems
Genes & genetic systems 生物-生化与分子生物学
CiteScore
1.50
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Genes & Genetic Systems , formerly the Japanese Journal of Genetics , is published bimonthly by the Genetics Society of Japan.
期刊最新文献
Asynchronous evolution of centromeric sequences across chromosomes in Pyricularia oryzae. The transposition of a heat-activated retrotransposon ONSEN resulted in changes in the hypocotyl elongation. Development of a TaqMan-based dosage analysis PCR assay for the molecular diagnosis of 22q11.2 deletion syndrome. Impact of late Quaternary climate change on the demographic history of Japanese field voles and hares revealed by mitochondrial cytochrome b sequences. Labor- and cost-effective long-read amplicon sequencing using a plasmid analysis service: application to transposon-containing alleles in Japanese morning glory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1