An integrated "Engage & Evasion" approach for mononuclear phagocyte system escape and efficient extracellular vesicle therapy.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-12-19 DOI:10.1186/s12951-024-03032-z
Hongman Liu, Mengting Li, Bing Xiang, Ziying Yang, Shiyu Cao, Wen Gong, Jingjing Li, Wenjing Zhou, Liang Ding, Qingsong Tang, Shengnan Wang, Jin Tang, Zixuan Fan, Ke He, Xuan Jiang, Zhenya Shen, Weiqian Chen, Jie Hui
{"title":"An integrated \"Engage & Evasion\" approach for mononuclear phagocyte system escape and efficient extracellular vesicle therapy.","authors":"Hongman Liu, Mengting Li, Bing Xiang, Ziying Yang, Shiyu Cao, Wen Gong, Jingjing Li, Wenjing Zhou, Liang Ding, Qingsong Tang, Shengnan Wang, Jin Tang, Zixuan Fan, Ke He, Xuan Jiang, Zhenya Shen, Weiqian Chen, Jie Hui","doi":"10.1186/s12951-024-03032-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic diseases are major contributors to global morbidity and mortality, posing a substantial threat to human health. Extracellular vesicles (EVs) play an essential role in enhancing neovascularization in ischemic tissues, thereby facilitating tissue repair and regeneration. However, the utilization of EVs is hindered by their rapid uptake and clearance by the mononuclear phagocyte system (MPS), which markedly impedes their therapeutic efficacy and organ-specific accumulation. Notably, CD47, upon binding to signal regulatory protein alpha, initiates a \"don't eat me\" signal, enabling immune evasion from the MPS. Our research has demonstrated that phagocytes predominantly engulf CD47<sup>low</sup> dendritic DC2.4 cell-derived EVs (DV), while engineered CD47<sup>high</sup> EVs (MV<sup>47</sup>) experience minimal ingestion. Leveraging these findings, we have developed a dual-faceted \"Engage & Evasion\" strategy. Initially, DVs were employed to saturate the MPS, serving as the \"engage\" component. Subsequently, MV<sup>47</sup>, fortified with CD47, was introduced for \"evasion\" purposes. This approach effectively minimized entrapment by the liver and spleen, boosted serum concentration, and enhanced final accumulation in non-MPS organs. In summary, our \"Engage & Evasion\" therapeutic strategy offers a promising avenue to enhance EV therapeutic potential against ischemic challenges through improved systemic distribution.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"770"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03032-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic diseases are major contributors to global morbidity and mortality, posing a substantial threat to human health. Extracellular vesicles (EVs) play an essential role in enhancing neovascularization in ischemic tissues, thereby facilitating tissue repair and regeneration. However, the utilization of EVs is hindered by their rapid uptake and clearance by the mononuclear phagocyte system (MPS), which markedly impedes their therapeutic efficacy and organ-specific accumulation. Notably, CD47, upon binding to signal regulatory protein alpha, initiates a "don't eat me" signal, enabling immune evasion from the MPS. Our research has demonstrated that phagocytes predominantly engulf CD47low dendritic DC2.4 cell-derived EVs (DV), while engineered CD47high EVs (MV47) experience minimal ingestion. Leveraging these findings, we have developed a dual-faceted "Engage & Evasion" strategy. Initially, DVs were employed to saturate the MPS, serving as the "engage" component. Subsequently, MV47, fortified with CD47, was introduced for "evasion" purposes. This approach effectively minimized entrapment by the liver and spleen, boosted serum concentration, and enhanced final accumulation in non-MPS organs. In summary, our "Engage & Evasion" therapeutic strategy offers a promising avenue to enhance EV therapeutic potential against ischemic challenges through improved systemic distribution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单核吞噬细胞系统逃逸和高效细胞外囊泡治疗的综合“介入&逃避”方法。
缺血性疾病是全球发病率和死亡率的主要原因,对人类健康构成重大威胁。细胞外囊泡(Extracellular vesicles, EVs)在促进缺血组织的新生血管形成,从而促进组织修复和再生方面发挥着重要作用。然而,ev的利用受到其被单核吞噬细胞系统(MPS)快速摄取和清除的阻碍,这明显阻碍了其治疗效果和器官特异性积累。值得注意的是,CD47与信号调节蛋白α结合后,启动“不要吃我”信号,使免疫逃避MPS。我们的研究表明,吞噬细胞主要吞噬cd47低的树突状DC2.4细胞源性ev (DV),而工程化cd47高的ev (MV47)则被最小的摄入。利用这些发现,我们制定了一个双重的“参与与逃避”战略。最初,使用DVs来饱和MPS,作为“接合”组件。随后,加入CD47的MV47被引入以“逃避”。这种方法有效地减少了肝脏和脾脏的夹带,提高了血清浓度,并增强了非mps器官的最终积累。总之,我们的“参与&逃避”治疗策略提供了一个有希望的途径,通过改善全身分布来增强EV治疗缺血性挑战的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Correction: Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. Polyoxometalate-based injectable coacervate inhibits HCC metastasis after incomplete radiofrequency ablation via scavenging ROS. An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing. Immunomodulation effects of collagen hydrogel encapsulating extracellular vesicles derived from calcium silicate stimulated-adipose mesenchymal stem cells for diabetic healing. Correction: Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1