Asymmetrically PEGylated and amphipathic heptamethine indocyanine dyes potentiate radiotherapy of renal cell carcinoma via mitochondrial targeting.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-12-18 DOI:10.1186/s12951-024-03012-3
Zifei Wu, Xie Huang, Chuan Wu, Yan Zhou, Mingquan Gao, Shenglin Luo, Qiang Xiang, Weidong Wang, Rong Li
{"title":"Asymmetrically PEGylated and amphipathic heptamethine indocyanine dyes potentiate radiotherapy of renal cell carcinoma via mitochondrial targeting.","authors":"Zifei Wu, Xie Huang, Chuan Wu, Yan Zhou, Mingquan Gao, Shenglin Luo, Qiang Xiang, Weidong Wang, Rong Li","doi":"10.1186/s12951-024-03012-3","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing the sensitivity of radiotherapy (RT) towards renal cell carcinoma (RCC) remains a challenge because RCC is a radioresistant tumor. In this work, we design and report asymmetrically Polyethylene Glycol (PEG)ylated and amphipathic heptamethine indocyanine dyes for efficient radiosensitization of RCC treatment. They were synthesized by modifying different lengths of PEG chains as hydrophilic moieties on one N-alkyl chain of a mitochondria-targeting heptamethine indocyanine dye (IR-808), and a radiosensitizer 2-nitroimidazole (NM) as a hydrophobic moiety on another N-alkyl chain. The PEG modification significantly improved water solubility, decreased the intermolecular π-π large aggregates, thereby enhanced renal excretion. The asymmetrical and amphipathic modification enhanced the preferential accumulation in renal tumors through self-assembly into small-size nanoparticles in aqueous environment. Radiosensitization was further improved by preferential accumulation in renal tumor cells and their mitochondria as mitochondria play a crucial role in rapid cancer cell growth, metastasis, and RT resistance. Additionally, the modification also increased the abilities of fluorescence emission and photostability, which is meaningful for imaging-guided precise RCC RT. Therefore, our findings may present a theranostic radiosensitizer for renal tumor-targeted imaging and radiosensitization.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"756"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03012-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the sensitivity of radiotherapy (RT) towards renal cell carcinoma (RCC) remains a challenge because RCC is a radioresistant tumor. In this work, we design and report asymmetrically Polyethylene Glycol (PEG)ylated and amphipathic heptamethine indocyanine dyes for efficient radiosensitization of RCC treatment. They were synthesized by modifying different lengths of PEG chains as hydrophilic moieties on one N-alkyl chain of a mitochondria-targeting heptamethine indocyanine dye (IR-808), and a radiosensitizer 2-nitroimidazole (NM) as a hydrophobic moiety on another N-alkyl chain. The PEG modification significantly improved water solubility, decreased the intermolecular π-π large aggregates, thereby enhanced renal excretion. The asymmetrical and amphipathic modification enhanced the preferential accumulation in renal tumors through self-assembly into small-size nanoparticles in aqueous environment. Radiosensitization was further improved by preferential accumulation in renal tumor cells and their mitochondria as mitochondria play a crucial role in rapid cancer cell growth, metastasis, and RT resistance. Additionally, the modification also increased the abilities of fluorescence emission and photostability, which is meaningful for imaging-guided precise RCC RT. Therefore, our findings may present a theranostic radiosensitizer for renal tumor-targeted imaging and radiosensitization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
N,N-dimethylformamide
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Engineered biomimetic cisplatin-polyphenol nanocomplex for chemo-immunotherapy of glioblastoma by inducing pyroptosis. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. A reactive oxygen species-responsive hydrogel loaded with Apelin-13 promotes the repair of spinal cord injury by regulating macrophage M1/M2 polarization and neuroinflammation. Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming. Genetically engineered biomimetic ATP-responsive nanozyme for the treatment of cardiac fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1