Pollen specialist bee species are accurately predicted from visitation, occurrence and phylogenetic data.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY Oecologia Pub Date : 2024-12-18 DOI:10.1007/s00442-024-05653-5
Colleen Smith, Nick Bachelder, Avery L Russell, Vanessa Morales, Abilene R Mosher, Katja C Seltmann
{"title":"Pollen specialist bee species are accurately predicted from visitation, occurrence and phylogenetic data.","authors":"Colleen Smith, Nick Bachelder, Avery L Russell, Vanessa Morales, Abilene R Mosher, Katja C Seltmann","doi":"10.1007/s00442-024-05653-5","DOIUrl":null,"url":null,"abstract":"<p><p>An animal's diet breadth is a central aspect of its life history, yet the factors determining why some species have narrow dietary breadths (specialists) and others have broad dietary breadths (generalists) remain poorly understood. This challenge is pronounced in herbivorous insects due to incomplete host plant data across many taxa and regions. Here, we develop and validate machine learning models to predict pollen diet breadth in bees, using a bee phylogeny and occurrence data for 682 bee species native to the United States, aiming to better understand key drivers. We found that pollen specialist bees made an average of 72.9% of their visits to host plants and could be predicted with high accuracy (mean 94%). Our models predicted generalist bee species, which made up a minority of the species in our dataset, with lower accuracy (mean 70%). The models tested on spatially and phylogenetically blocked data revealed that the most informative predictors of diet breadth are plant phylogenetic diversity, bee species' geographic range, and regional abundance. Our findings also confirm that range size is predictive of diet breadth and that both male and female specialist bees mostly visit their host plants. Overall, our results suggest we can use visitation data to predict specialist bee species in regions and for taxonomic groups where diet breadth is unknown, though predicting generalists may be more challenging. These methods can thus enhance our understanding of plant-pollinator interactions, leading to improved conservation outcomes and a better understanding of the pollination services bees provide.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"13"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05653-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An animal's diet breadth is a central aspect of its life history, yet the factors determining why some species have narrow dietary breadths (specialists) and others have broad dietary breadths (generalists) remain poorly understood. This challenge is pronounced in herbivorous insects due to incomplete host plant data across many taxa and regions. Here, we develop and validate machine learning models to predict pollen diet breadth in bees, using a bee phylogeny and occurrence data for 682 bee species native to the United States, aiming to better understand key drivers. We found that pollen specialist bees made an average of 72.9% of their visits to host plants and could be predicted with high accuracy (mean 94%). Our models predicted generalist bee species, which made up a minority of the species in our dataset, with lower accuracy (mean 70%). The models tested on spatially and phylogenetically blocked data revealed that the most informative predictors of diet breadth are plant phylogenetic diversity, bee species' geographic range, and regional abundance. Our findings also confirm that range size is predictive of diet breadth and that both male and female specialist bees mostly visit their host plants. Overall, our results suggest we can use visitation data to predict specialist bee species in regions and for taxonomic groups where diet breadth is unknown, though predicting generalists may be more challenging. These methods can thus enhance our understanding of plant-pollinator interactions, leading to improved conservation outcomes and a better understanding of the pollination services bees provide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
期刊最新文献
Pollen specialist bee species are accurately predicted from visitation, occurrence and phylogenetic data. Climate warming and temporal variation in reproductive strategies in the endangered meadow viper. Urbanization-induced simplification of isotopic space in birds from a big Neotropical city. Does manganese influence grass litter decomposition on a Hawaiian rainfall gradient? Increased temperatures could heighten vulnerability of an ant-plant mutualism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1