Jun Zhang, Dongfang Zhang, Jingyan Liu, Yuhong Zhou, Xiaoshuo Cui, Xiaofei Fan
{"title":"DSCONV-GAN: a UAV-BASED model for Verticillium Wilt disease detection in Chinese cabbage in complex growing environments.","authors":"Jun Zhang, Dongfang Zhang, Jingyan Liu, Yuhong Zhou, Xiaoshuo Cui, Xiaofei Fan","doi":"10.1186/s13007-024-01303-2","DOIUrl":null,"url":null,"abstract":"<p><p>Verticillium wilt greatly hampers Chinese cabbage growth, causing significant yield limitations. Rapid and accurate detection of Verticillium wilt in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) can provide significant agronomic benefits. Here, we propose a detection model, DSConv-GAN, which is based on images acquired by an unmanned aerial vehicle (UAV). Based on YOLOv8, with the addition of the dynamic snake convolution (DSConv) module and the improved loss function maximum possible distance intersection-over-union (MPDIoU), we acquired enhanced complex structures and global characteristics in Chinese cabbage images under different growth conditions. To reduce the difficulty of acquiring diseased Chinese cabbage data, a cycle-consistent generative adversarial network (CycleGAN) was used to simulate and generate images of the Verticillium wilt characteristics for multiple fields. The detection of lightly infected plants achieved precision, recall, mean average precision (mAP), and F1-score of 81.3, 86.6, 87.7, and 83.9%, respectively. DSConv-GAN outperforms other models in terms of precision, detection speed, robustness, and generalization. The model is combined with software to improve the practicability of the proposed method. Our results demonstrate DSConv-GAN to be an effective intelligent farming tool that provides early, rapid, and accurate detection of Chinese cabbage Verticillium wilt in complex growing environments.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"186"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01303-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Verticillium wilt greatly hampers Chinese cabbage growth, causing significant yield limitations. Rapid and accurate detection of Verticillium wilt in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) can provide significant agronomic benefits. Here, we propose a detection model, DSConv-GAN, which is based on images acquired by an unmanned aerial vehicle (UAV). Based on YOLOv8, with the addition of the dynamic snake convolution (DSConv) module and the improved loss function maximum possible distance intersection-over-union (MPDIoU), we acquired enhanced complex structures and global characteristics in Chinese cabbage images under different growth conditions. To reduce the difficulty of acquiring diseased Chinese cabbage data, a cycle-consistent generative adversarial network (CycleGAN) was used to simulate and generate images of the Verticillium wilt characteristics for multiple fields. The detection of lightly infected plants achieved precision, recall, mean average precision (mAP), and F1-score of 81.3, 86.6, 87.7, and 83.9%, respectively. DSConv-GAN outperforms other models in terms of precision, detection speed, robustness, and generalization. The model is combined with software to improve the practicability of the proposed method. Our results demonstrate DSConv-GAN to be an effective intelligent farming tool that provides early, rapid, and accurate detection of Chinese cabbage Verticillium wilt in complex growing environments.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.