A biomathematical model of SARS-CoV-2 in Syrian hamsters.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-12-18 DOI:10.1038/s41598-024-80498-9
Sibylle Schirm, Geraldine Nouailles, Holger Kirsten, Jakob Trimpert, Emanuel Wyler, Luiz Gustavo Teixeira Alves, Markus Landthaler, Peter Ahnert, Norbert Suttorp, Martin Witzenrath, Markus Scholz
{"title":"A biomathematical model of SARS-CoV-2 in Syrian hamsters.","authors":"Sibylle Schirm, Geraldine Nouailles, Holger Kirsten, Jakob Trimpert, Emanuel Wyler, Luiz Gustavo Teixeira Alves, Markus Landthaler, Peter Ahnert, Norbert Suttorp, Martin Witzenrath, Markus Scholz","doi":"10.1038/s41598-024-80498-9","DOIUrl":null,"url":null,"abstract":"<p><p>When infected with SARS-CoV-2, Syrian hamsters (Mesocricetus auratus) develop moderate disease severity presenting key features of human COVID-19. We here develop a biomathematical model of the disease course by translating known biological mechanisms of virus-host interactions and immune responses into ordinary differential equations. We explicitly describe the dynamics of virus population, affected alveolar epithelial cells, and involved relevant immune cells comprising for example CD4+ T cells, CD8+ T cells, macrophages, natural killer cells and B cells. We also describe the humoral response dynamics of neutralising antibodies and major regulatory cytokines including CCL8 and CXCL10. The model is developed and parametrized based on experimental data collected at days 2, 3, 5, and 14 post infection. Pulmonary cell composition and their transcriptional profiles were obtained by lung single-cell RNA (scRNA) sequencing analysis. Parametrization of the model resulted in a good agreement of model and data. The model can be used to predict, for example, the time course of the virus population, immune cell dynamics, antibody production and regeneration of alveolar cells for different therapy scenarios or after multiple-infection events. We aim to translate this model to the human situation in the future.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30541"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80498-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

When infected with SARS-CoV-2, Syrian hamsters (Mesocricetus auratus) develop moderate disease severity presenting key features of human COVID-19. We here develop a biomathematical model of the disease course by translating known biological mechanisms of virus-host interactions and immune responses into ordinary differential equations. We explicitly describe the dynamics of virus population, affected alveolar epithelial cells, and involved relevant immune cells comprising for example CD4+ T cells, CD8+ T cells, macrophages, natural killer cells and B cells. We also describe the humoral response dynamics of neutralising antibodies and major regulatory cytokines including CCL8 and CXCL10. The model is developed and parametrized based on experimental data collected at days 2, 3, 5, and 14 post infection. Pulmonary cell composition and their transcriptional profiles were obtained by lung single-cell RNA (scRNA) sequencing analysis. Parametrization of the model resulted in a good agreement of model and data. The model can be used to predict, for example, the time course of the virus population, immune cell dynamics, antibody production and regeneration of alveolar cells for different therapy scenarios or after multiple-infection events. We aim to translate this model to the human situation in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
A biomathematical model of SARS-CoV-2 in Syrian hamsters. Author Correction: Fast inter-frame motion correction in contrast-free ultrasound quantitative microvasculature imaging using deep learning. Craving induction through virtual reality cue-exposure for patients with alcohol dependence in rehabilitation treatment. Damage identification based on the inner product matrix and parallel convolution neural network for frame structure. Decoding skin cancer classification: perspectives, insights, and advances through researchers' lens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1