Robust deep-learning based refrigerator food recognition.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1442948
Xiaoyan Dai
{"title":"Robust deep-learning based refrigerator food recognition.","authors":"Xiaoyan Dai","doi":"10.3389/frai.2024.1442948","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic food identification utilizing artificial intelligence (AI) technology in smart refrigerators presents an innovative solution. However, existing studies exhibit significant limitations. Achieving consistent high performance in recognition across varying camera distances and diverse real-world conditions remain a formidable challenge. Current approaches often struggle to accurately recognize items in scenarios involving occlusions, variable distortions, and complex backgrounds, thereby limiting their practical applicability in household environments. This study addresses these deficiencies by enhancing the Feature Pyramid Network (FPN) of YOLACT with an additional layer designed to capture nuanced information. Furthermore, we propose a two-stage data augmentation method that simulates diverse conditions including distortion and occlusion, to generate images that reflect various backgrounds and handheld scenarios. Comparative analyses with previous research and evaluations on our original dataset demonstrate that our approach significantly improves recognition rates for both typical and challenging real-world images. These enhancements contribute to more effective food waste management in households and indicate broader applications for automatic identification systems.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1442948"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1442948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic food identification utilizing artificial intelligence (AI) technology in smart refrigerators presents an innovative solution. However, existing studies exhibit significant limitations. Achieving consistent high performance in recognition across varying camera distances and diverse real-world conditions remain a formidable challenge. Current approaches often struggle to accurately recognize items in scenarios involving occlusions, variable distortions, and complex backgrounds, thereby limiting their practical applicability in household environments. This study addresses these deficiencies by enhancing the Feature Pyramid Network (FPN) of YOLACT with an additional layer designed to capture nuanced information. Furthermore, we propose a two-stage data augmentation method that simulates diverse conditions including distortion and occlusion, to generate images that reflect various backgrounds and handheld scenarios. Comparative analyses with previous research and evaluations on our original dataset demonstrate that our approach significantly improves recognition rates for both typical and challenging real-world images. These enhancements contribute to more effective food waste management in households and indicate broader applications for automatic identification systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的冰箱食品识别。
利用人工智能(AI)技术在智能冰箱中自动识别食品是一种创新的解决方案。然而,现有的研究显示出明显的局限性。在不同的相机距离和不同的现实条件下实现一致的高性能识别仍然是一个艰巨的挑战。目前的方法往往难以准确识别遮挡、可变扭曲和复杂背景下的物品,从而限制了它们在家庭环境中的实际适用性。本研究通过增强YOLACT的特征金字塔网络(FPN),增加一个额外的层来捕获细微的信息,从而解决了这些缺陷。此外,我们提出了一种两阶段的数据增强方法,该方法模拟了包括失真和遮挡在内的多种条件,以生成反映各种背景和手持场景的图像。与之前对原始数据集的研究和评估进行比较分析表明,我们的方法显着提高了典型和具有挑战性的真实世界图像的识别率。这些改进有助于在家庭中更有效地管理食物垃圾,并预示着自动识别系统的更广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1