{"title":"Cell Membrane Hybrid Liposome-Targeted Delivery of the Heat Shock Protein 90 C-Terminal Inhibitor for the Treatment of Idiopathic Pulmonary Fibrosis.","authors":"Jingwen Yang, Danya Lu, Yuping Sun, Mengmeng Qiu, Tianlong Zhao, Baofei Yan, Siting Wang, Zhitao Shao, Demei Wang, Ting Li, Qingqing Xiao, Tingming Fu","doi":"10.1021/acsptsci.4c00524","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) represents a grave challenge as it is characterized by high fatality rates and irreversible progression without effective clinical interventions available at present. Previous studies have demonstrated that inhibition of heat shock protein 90 (HSP90) by an N-terminal inhibitor disrupts its interaction with TGFβRII, leading to the instability of TGFβRII, thus blocking the role of transforming growth factor-β1 (TGF-β1), which could potentially ameliorate IPF symptoms. However, given that the broad spectrum of HSP90 N-terminal inhibitors may lead to unanticipated side effects, we hypothesize that C-terminal inhibitors of HSP90 can interfere with TGFβRII while minimizing adverse reactions. In this study, silybin, a C-terminal inhibitor of HSP90, was separated into monomers, and silybin A was screened for its superior efficacy against TGFβRII. To facilitate targeted therapy for treating IPF, a cell membrane hybrid liposome loaded with silybin A (<i>Cm</i>-A-Lip) was developed to deliver silybin A to lung fibroblasts through pulmonary drug delivery. A bleomycin-induced IPF mouse model was used to evaluate the efficacy of <i>Cm</i>-A-Lip. By examination of lung hydroxyproline content, wet weight, histology, and inflammatory factor expression, the results showed that pulmonary delivery of <i>Cm</i>-A-Lip could increase the drug retention time in lung tissue compared with intravenous injection. Furthermore, <i>Cm</i>-A-Lip exhibited superior antifibrotic activity relative to conventional liposmomes loaded with silybin A (A-Lip) while concurrently mitigating systemic inflammatory responses associated with silybin A administration, thus enhancing the overall safety profile.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 12","pages":"4083-4095"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a grave challenge as it is characterized by high fatality rates and irreversible progression without effective clinical interventions available at present. Previous studies have demonstrated that inhibition of heat shock protein 90 (HSP90) by an N-terminal inhibitor disrupts its interaction with TGFβRII, leading to the instability of TGFβRII, thus blocking the role of transforming growth factor-β1 (TGF-β1), which could potentially ameliorate IPF symptoms. However, given that the broad spectrum of HSP90 N-terminal inhibitors may lead to unanticipated side effects, we hypothesize that C-terminal inhibitors of HSP90 can interfere with TGFβRII while minimizing adverse reactions. In this study, silybin, a C-terminal inhibitor of HSP90, was separated into monomers, and silybin A was screened for its superior efficacy against TGFβRII. To facilitate targeted therapy for treating IPF, a cell membrane hybrid liposome loaded with silybin A (Cm-A-Lip) was developed to deliver silybin A to lung fibroblasts through pulmonary drug delivery. A bleomycin-induced IPF mouse model was used to evaluate the efficacy of Cm-A-Lip. By examination of lung hydroxyproline content, wet weight, histology, and inflammatory factor expression, the results showed that pulmonary delivery of Cm-A-Lip could increase the drug retention time in lung tissue compared with intravenous injection. Furthermore, Cm-A-Lip exhibited superior antifibrotic activity relative to conventional liposmomes loaded with silybin A (A-Lip) while concurrently mitigating systemic inflammatory responses associated with silybin A administration, thus enhancing the overall safety profile.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.