CD69+CD103+CD8+ tissue-resident memory T cells possess stronger anti-tumor activity and predict better prognosis in colorectal cancer.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-12-18 DOI:10.1186/s12964-024-01990-3
Zi-Xin Wu, Tian-Tian Da, Chuan Huang, Xiao-Qing Wang, Liang Li, Zhi-Bin Zhao, Ting-Ting Yin, Hai-Qing Ma, Zhe-Xiong Lian, Jie Long, Fei Wang, Jie Cao
{"title":"CD69<sup>+</sup>CD103<sup>+</sup>CD8<sup>+</sup> tissue-resident memory T cells possess stronger anti-tumor activity and predict better prognosis in colorectal cancer.","authors":"Zi-Xin Wu, Tian-Tian Da, Chuan Huang, Xiao-Qing Wang, Liang Li, Zhi-Bin Zhao, Ting-Ting Yin, Hai-Qing Ma, Zhe-Xiong Lian, Jie Long, Fei Wang, Jie Cao","doi":"10.1186/s12964-024-01990-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite advancements in therapeutic methodologies, it still causes a high rate of patient mortality. CD8<sup>+</sup> tissue-resident memory T (TRM) cells are strategically positioned to mediate effective anti-tumor responses. However, the characteristic surface molecules and functions of CD8<sup>+</sup> TRM cells exhibit significant heterogeneity.</p><p><strong>Methods: </strong>The roles and anti-tumor biological functions of different CD8<sup>+</sup> TRM subsets in CRC were determined by clinical CRC samples, bioinformatics analysis, and in vitro experiments including co-culture experiments and transwell migration assays. The signaling pathways that synergistically regulate the differentiation of CD8<sup>+</sup> TRM cells were identified by in vitro CD8<sup>+</sup> T cell activation and inhibition assays, and the functioning transcription factors were predicted using the UCSC and JASPAR databases.</p><p><strong>Results: </strong>We found that different CD8<sup>+</sup> TRM subsets existed in CRC tumor tissues, which were identified as CD69<sup>-</sup>CD103<sup>-</sup>CD8<sup>+</sup> TRM, CD69<sup>+</sup>CD103<sup>-</sup>CD8<sup>+</sup> TRM (SP CD8<sup>+</sup> TRM), and CD69<sup>+</sup>CD103<sup>+</sup>CD8<sup>+</sup> TRM (DP CD8<sup>+</sup> TRM) subsets. Compared with SP CD8<sup>+</sup> TRM cells, increased infiltration of DP CD8<sup>+</sup> TRM cells predicted better prognosis and played a protective role mainly in tumor invasion and lymph node metastasis of CRC. DP CD8<sup>+</sup> TRM cells expressed higher levels of effector molecules and exerted stronger anti-tumor effects in a FAS/FASL pathway-dependent manner. Additionally, DP CD8<sup>+</sup> TRM cells secreted higher levels of CXCL13 and recruited B cells into tumor tissues through the CXCL13/CXCR5 signaling axis to form tertiary lymphoid structures, participating in anti-tumor immune responses. Notch and TGF-β signaling pathways synergistically regulate the differentiation of DP CD8<sup>+</sup> TRM cells.</p><p><strong>Conclusions: </strong>We clarified the roles and mechanisms of different CD8<sup>+</sup> TRM subsets in CRC and identified that DP CD8<sup>+</sup> TRM cells exert stronger anti-tumor effects and predict better prognosis, which provides ideas for developing new clinically available therapeutic targets.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"608"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01990-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite advancements in therapeutic methodologies, it still causes a high rate of patient mortality. CD8+ tissue-resident memory T (TRM) cells are strategically positioned to mediate effective anti-tumor responses. However, the characteristic surface molecules and functions of CD8+ TRM cells exhibit significant heterogeneity.

Methods: The roles and anti-tumor biological functions of different CD8+ TRM subsets in CRC were determined by clinical CRC samples, bioinformatics analysis, and in vitro experiments including co-culture experiments and transwell migration assays. The signaling pathways that synergistically regulate the differentiation of CD8+ TRM cells were identified by in vitro CD8+ T cell activation and inhibition assays, and the functioning transcription factors were predicted using the UCSC and JASPAR databases.

Results: We found that different CD8+ TRM subsets existed in CRC tumor tissues, which were identified as CD69-CD103-CD8+ TRM, CD69+CD103-CD8+ TRM (SP CD8+ TRM), and CD69+CD103+CD8+ TRM (DP CD8+ TRM) subsets. Compared with SP CD8+ TRM cells, increased infiltration of DP CD8+ TRM cells predicted better prognosis and played a protective role mainly in tumor invasion and lymph node metastasis of CRC. DP CD8+ TRM cells expressed higher levels of effector molecules and exerted stronger anti-tumor effects in a FAS/FASL pathway-dependent manner. Additionally, DP CD8+ TRM cells secreted higher levels of CXCL13 and recruited B cells into tumor tissues through the CXCL13/CXCR5 signaling axis to form tertiary lymphoid structures, participating in anti-tumor immune responses. Notch and TGF-β signaling pathways synergistically regulate the differentiation of DP CD8+ TRM cells.

Conclusions: We clarified the roles and mechanisms of different CD8+ TRM subsets in CRC and identified that DP CD8+ TRM cells exert stronger anti-tumor effects and predict better prognosis, which provides ideas for developing new clinically available therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Signal integrator function of CXXC5 in Cancer. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1