The Depth Estimation and Visualization of Dermatological Lesions: Development and Usability Study.

Q3 Medicine JMIR dermatology Pub Date : 2024-12-18 DOI:10.2196/59839
Pranav Parekh, Richard Oyeleke, Tejas Vishwanath
{"title":"The Depth Estimation and Visualization of Dermatological Lesions: Development and Usability Study.","authors":"Pranav Parekh, Richard Oyeleke, Tejas Vishwanath","doi":"10.2196/59839","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thus far, considerable research has been focused on classifying a lesion as benign or malignant. However, there is a requirement for quick depth estimation of a lesion for the accurate clinical staging of the lesion. The lesion could be malignant and quickly grow beneath the skin. While biopsy slides provide clear information on lesion depth, it is an emerging domain to find quick and noninvasive methods to estimate depth, particularly based on 2D images.</p><p><strong>Objective: </strong>This study proposes a novel methodology for the depth estimation and visualization of skin lesions. Current diagnostic methods are approximate in determining how much a lesion may have proliferated within the skin. Using color gradients and depth maps, this method will give us a definite estimate and visualization procedure for lesions and other skin issues. We aim to generate 3D holograms of the lesion depth such that dermatologists can better diagnose melanoma.</p><p><strong>Methods: </strong>We started by performing classification using a convolutional neural network (CNN), followed by using explainable artificial intelligence to localize the image features responsible for the CNN output. We used the gradient class activation map approach to perform localization of the lesion from the rest of the image. We applied computer graphics for depth estimation and developing the 3D structure of the lesion. We used the depth from defocus method for depth estimation from single images and Gabor filters for volumetric representation of the depth map. Our novel method, called red spot analysis, measures the degree of infection based on how a conical hologram is constructed. We collaborated with a dermatologist to analyze the 3D hologram output and received feedback on how this method can be introduced to clinical implementation.</p><p><strong>Results: </strong>The neural model plus the explainable artificial intelligence algorithm achieved an accuracy of 86% in classifying the lesions correctly as benign or malignant. For the entire pipeline, we mapped the benign and malignant cases to their conical representations. We received exceedingly positive feedback while pitching this idea at the King Edward Memorial Institute in India. Dermatologists considered this a potentially useful tool in the depth estimation of lesions. We received a number of ideas for evaluating the technique before it can be introduced to the clinical scene.</p><p><strong>Conclusions: </strong>When we map the CNN outputs (benign or malignant) to the corresponding hologram, we observe that a malignant lesion has a higher concentration of red spots (infection) in the upper and deeper portions of the skin, and that the malignant cases have deeper conical sections when compared with the benign cases. This proves that the qualitative results map with the initial classification performed by the neural model. The positive feedback provided by the dermatologist suggests that the qualitative conclusion of the method is sufficient.</p>","PeriodicalId":73553,"journal":{"name":"JMIR dermatology","volume":"7 ","pages":"e59839"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Thus far, considerable research has been focused on classifying a lesion as benign or malignant. However, there is a requirement for quick depth estimation of a lesion for the accurate clinical staging of the lesion. The lesion could be malignant and quickly grow beneath the skin. While biopsy slides provide clear information on lesion depth, it is an emerging domain to find quick and noninvasive methods to estimate depth, particularly based on 2D images.

Objective: This study proposes a novel methodology for the depth estimation and visualization of skin lesions. Current diagnostic methods are approximate in determining how much a lesion may have proliferated within the skin. Using color gradients and depth maps, this method will give us a definite estimate and visualization procedure for lesions and other skin issues. We aim to generate 3D holograms of the lesion depth such that dermatologists can better diagnose melanoma.

Methods: We started by performing classification using a convolutional neural network (CNN), followed by using explainable artificial intelligence to localize the image features responsible for the CNN output. We used the gradient class activation map approach to perform localization of the lesion from the rest of the image. We applied computer graphics for depth estimation and developing the 3D structure of the lesion. We used the depth from defocus method for depth estimation from single images and Gabor filters for volumetric representation of the depth map. Our novel method, called red spot analysis, measures the degree of infection based on how a conical hologram is constructed. We collaborated with a dermatologist to analyze the 3D hologram output and received feedback on how this method can be introduced to clinical implementation.

Results: The neural model plus the explainable artificial intelligence algorithm achieved an accuracy of 86% in classifying the lesions correctly as benign or malignant. For the entire pipeline, we mapped the benign and malignant cases to their conical representations. We received exceedingly positive feedback while pitching this idea at the King Edward Memorial Institute in India. Dermatologists considered this a potentially useful tool in the depth estimation of lesions. We received a number of ideas for evaluating the technique before it can be introduced to the clinical scene.

Conclusions: When we map the CNN outputs (benign or malignant) to the corresponding hologram, we observe that a malignant lesion has a higher concentration of red spots (infection) in the upper and deeper portions of the skin, and that the malignant cases have deeper conical sections when compared with the benign cases. This proves that the qualitative results map with the initial classification performed by the neural model. The positive feedback provided by the dermatologist suggests that the qualitative conclusion of the method is sufficient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
The Comparative Sufficiency of ChatGPT, Google Bard, and Bing AI in Answering Diagnosis, Treatment, and Prognosis Questions About Common Dermatological Diagnoses. The Depth Estimation and Visualization of Dermatological Lesions: Development and Usability Study. Dermatology in Student-Run Clinics in the United States: Scoping Review. Improving Affordability in Dermatology: Cost Savings in Mark Cuban Cost Plus Drug Company Versus GoodRx. Dermatologic Data From the Global Burden of Disease Study 2019 and the PatientsLikeMe Online Support Community: Comparative Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1