Lead Phytomolecules for Treating Parkinson's Disease.

Krishn Kumar Agrawal, Chandra Veer, Yogesh Murti, Sunil Pratap Singh
{"title":"Lead Phytomolecules for Treating Parkinson's Disease.","authors":"Krishn Kumar Agrawal, Chandra Veer, Yogesh Murti, Sunil Pratap Singh","doi":"10.2174/0118715249355503241210101001","DOIUrl":null,"url":null,"abstract":"<p><p>One percent of persons over 65 years of age suffer from Parkinson's disease, a neurological ailment marked by dopaminergic neurons in the nigrostriatal pathway gradually dying and being depleted in the striatum. Parkin and PINK1 gene mutations, which are essential for mitophagy and impair mitochondrial function, are the cause of it. Parkinson's disease is linked to a number of motor and impairment disorders, including bradykinesia, rigid muscles, tremor at rest, and imbalance. Numerous signaling pathways, including α-synuclein aggregation, lead to age-related decline in proteolytic defense systems. Parkinson's disease etiology involves oxidative stress, ferroptosis, mitochondrial failure, and neuroinflammation. Parkinson's disease is significantly influenced by neuroinflammation, which is a result of both innate and adaptive immune responses. The purpose of studying mechanisms and phytomolecules is to assist researchers in creating therapies for Parkinson's disease. Phytomolecules, like curcumin, β- amyrin, berberine, capsaicin, and gentisic acid, exert neuroprotective properties by reducing ROS levels, lessening α-synuclein-induced toxicity, and shielding the cells from apoptosis. In conclusion, the studies presented here provide valuable insights into the potential of various medications for Parkinson's disease treatment. By understanding the mechanisms behind these treatments, researchers can develop more effective treatments for PD.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249355503241210101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One percent of persons over 65 years of age suffer from Parkinson's disease, a neurological ailment marked by dopaminergic neurons in the nigrostriatal pathway gradually dying and being depleted in the striatum. Parkin and PINK1 gene mutations, which are essential for mitophagy and impair mitochondrial function, are the cause of it. Parkinson's disease is linked to a number of motor and impairment disorders, including bradykinesia, rigid muscles, tremor at rest, and imbalance. Numerous signaling pathways, including α-synuclein aggregation, lead to age-related decline in proteolytic defense systems. Parkinson's disease etiology involves oxidative stress, ferroptosis, mitochondrial failure, and neuroinflammation. Parkinson's disease is significantly influenced by neuroinflammation, which is a result of both innate and adaptive immune responses. The purpose of studying mechanisms and phytomolecules is to assist researchers in creating therapies for Parkinson's disease. Phytomolecules, like curcumin, β- amyrin, berberine, capsaicin, and gentisic acid, exert neuroprotective properties by reducing ROS levels, lessening α-synuclein-induced toxicity, and shielding the cells from apoptosis. In conclusion, the studies presented here provide valuable insights into the potential of various medications for Parkinson's disease treatment. By understanding the mechanisms behind these treatments, researchers can develop more effective treatments for PD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lead Phytomolecules for Treating Parkinson's Disease. Phthalates Induced Neurotoxicity: A Mechanistic Approach. The Importance of Stem Cells in the Treatment of Neuropathic Pain. Neuroprotective Effect of Naturally Occurring Flavonoids. Antidepressant Potential of Hispidulin Present in S. barbata D. Don: Mechanistic Insights through Neurochemical and Behavioral Assessments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1