A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders

Doodipala Samba Reddy, Neo Zhu, Trisha Challa, Sai Gajjela, Hetvi Desai, Sreevidhya Ramakrishnan, Xin Wu
{"title":"A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders","authors":"Doodipala Samba Reddy,&nbsp;Neo Zhu,&nbsp;Trisha Challa,&nbsp;Sai Gajjela,&nbsp;Hetvi Desai,&nbsp;Sreevidhya Ramakrishnan,&nbsp;Xin Wu","doi":"10.1002/cpz1.70053","DOIUrl":null,"url":null,"abstract":"<p>Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology. Stereology, a quantitative tool that uses 3-dimensional visualization of cells, provides a robust protocol for evaluating neuronal injury and neurodegeneration. This article presents a comprehensive and optimized stereology protocol for unbiased quantification of neuronal injury, neurodegeneration, and neurogenesis in rat and mouse models. This protocol involves precise counting of injured neurons, surviving neurons, and interneurons through immunohistochemical processing of brain sections for NeuN(+) principal neurons, parvalbumin (PV+) interneurons, doublecortin (DCX+) newborn neurons, and Fluoro-Jade B (FJB+)-stained injured cells. Predefined hippocampal and amygdala regions were identified and analyzed using a Visiopharm stereology software-driven compound microscope. Cell density and absolute cell numbers were determined using the optical fractionation method. Our stereology protocol accurately estimated 1.5 million total NeuN(+) principal neurons and 0.05 million PV(+) interneurons in the rat hippocampus, as well as 1.2 million total principal neurons and 0.025 million interneurons in the mouse hippocampus. FJB(+) counting provided a quantitative index of damaged neurons, and the stereology of DCX(+) neurons demonstrated the extent of neurogenesis. Overall, this stereology protocol enables precise, accurate, and unbiased counting of total neurons in any brain region. This offers a reliable quantitative tool for studying neuronal injury and protection in various models of acute brain injury, neurotoxicity, and chronic neurological disorders. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in rat brain sections</p><p><b>Basic Protocol 2</b>: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in mouse brain sections</p><p><b>Basic Protocol 3</b>: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala in rats</p><p><b>Basic Protocol 4</b>: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala regions in mice</p><p><b>Basic Protocol 5</b>: Brain fixation and histology processing</p><p><b>Basic Protocol 6</b>: Immunochemistry of principal neurons, interneurons, and newborn neurons</p><p><b>Basic Protocol 7</b>: Fluoro-Jade B staining of injured neurons</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology. Stereology, a quantitative tool that uses 3-dimensional visualization of cells, provides a robust protocol for evaluating neuronal injury and neurodegeneration. This article presents a comprehensive and optimized stereology protocol for unbiased quantification of neuronal injury, neurodegeneration, and neurogenesis in rat and mouse models. This protocol involves precise counting of injured neurons, surviving neurons, and interneurons through immunohistochemical processing of brain sections for NeuN(+) principal neurons, parvalbumin (PV+) interneurons, doublecortin (DCX+) newborn neurons, and Fluoro-Jade B (FJB+)-stained injured cells. Predefined hippocampal and amygdala regions were identified and analyzed using a Visiopharm stereology software-driven compound microscope. Cell density and absolute cell numbers were determined using the optical fractionation method. Our stereology protocol accurately estimated 1.5 million total NeuN(+) principal neurons and 0.05 million PV(+) interneurons in the rat hippocampus, as well as 1.2 million total principal neurons and 0.025 million interneurons in the mouse hippocampus. FJB(+) counting provided a quantitative index of damaged neurons, and the stereology of DCX(+) neurons demonstrated the extent of neurogenesis. Overall, this stereology protocol enables precise, accurate, and unbiased counting of total neurons in any brain region. This offers a reliable quantitative tool for studying neuronal injury and protection in various models of acute brain injury, neurotoxicity, and chronic neurological disorders. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in rat brain sections

Basic Protocol 2: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in mouse brain sections

Basic Protocol 3: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala in rats

Basic Protocol 4: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala regions in mice

Basic Protocol 5: Brain fixation and histology processing

Basic Protocol 6: Immunochemistry of principal neurons, interneurons, and newborn neurons

Basic Protocol 7: Fluoro-Jade B staining of injured neurons

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders Biotin-Based Northern Blotting (BiNoB): A Cost-Efficient Alternative for Detection of Small RNAs Development of a Microphysiological Cartilage-on-Chip Platform for Dynamic Biomechanical Stimulation of Three-Dimensional Encapsulated Chondrocytes in Agarose Hydrogels Isolation, Purification, and Comprehensive Flow Cytometry Assessment of Lung Stromal Cells Quantifying Biomass and Visualizing Cell Coverage on Fibrous Scaffolds for Cultivated Meat Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1