Naveed Akbar, Evelyn Grace Luciani, Raheel Ahmad, Dasol Lee, Sara Veiga, Daniel Christopher Rabe, Shannon Leigh Stott
{"title":"The isolation of VCAM-1<sup>+</sup> endothelial cell-derived extracellular vesicles using microfluidics.","authors":"Naveed Akbar, Evelyn Grace Luciani, Raheel Ahmad, Dasol Lee, Sara Veiga, Daniel Christopher Rabe, Shannon Leigh Stott","doi":"10.20517/evcna.2023.51","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Vascular cell adhesion molecule-1 (VCAM-1<sup>+</sup>) endothelial cell-derived extracellular vesicles (EC-EVs) are augmented in cardiovascular disease, where they can signal the deployment of immune cells from the splenic reserve. Endothelial cells in culture activated with pro-inflammatory tumor necrosis factor-α (TNF-a) also release VCAM-1<sup>+</sup> EC-EVs. However, isolating VCAM-1<sup>+</sup> EC-EVs from conditioned cell culture media for subsequent in-depth analysis remains challenging. <b>Aim:</b> We utilized the extracellular vesicles (EV) microfluidics herringbone chip (<sup>EV</sup>HB-Chip), coated with anti-VCAM-1 antibodies, for selective capture of VCAM-1<sup>+</sup> cells and EC-EVs. <b>Methods and Results:</b> Engineered EA.hy926 endothelial cells overexpressing VCAM-1 (<i>P</i> < 0.001 versus control) showed increased binding to the VCAM-1- <sup>EV</sup>HB-Chip versus an IgG device. TNF-α-stimulated human umbilical cord vein endothelial cells (HUVECs) exhibited elevated VCAM-1 protein levels (<i>P</i> < 0.001) and preferential binding to the VCAM-1- <sup>EV</sup>HB-Chip versus the IgG device. HUVECs stimulated with TNF-α showed differential gene expression of intercellular adhesion molecule-1 (ICAM-1) (<i>P</i> < 0.001) and VCAM-1 (<i>P</i> < 0.001) by digital droplet PCR versus control cells. HUVEC-derived EC-EVs were positive for CD9, CD63, HSP70, and ALIX and had a modal size of 83.5 nm. Control and TNF-α-stimulated HUVEC-derived EC-EV cultures were captured on the VCAM-1- <sup>EV</sup>HB-Chip, demonstrating selective capture. VCAM-1<sup>+</sup> EC-EV were significantly enriched for ICAM-1 (<i>P</i> < 0.001) mRNA transcripts. <b>Conclusion:</b> This study presents a novel approach using the <sup>EV</sup>HB-Chip, coated with anti-VCAM-1 antibodies and digital droplet PCR for the study of VCAM-1<sup>+</sup> EC-EVs. Isolation of VCAM-1<sup>+</sup> EC-EV from heterogeneous sources such as conditioned cell culture media holds promise for subsequent detailed characterization, and may facilitate the study of VCAM-1<sup>+</sup> EC-EVs in cardiovascular and metabolic diseases, for disease monitoring and therapeutic insights.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 1","pages":"83-94"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2023.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Vascular cell adhesion molecule-1 (VCAM-1+) endothelial cell-derived extracellular vesicles (EC-EVs) are augmented in cardiovascular disease, where they can signal the deployment of immune cells from the splenic reserve. Endothelial cells in culture activated with pro-inflammatory tumor necrosis factor-α (TNF-a) also release VCAM-1+ EC-EVs. However, isolating VCAM-1+ EC-EVs from conditioned cell culture media for subsequent in-depth analysis remains challenging. Aim: We utilized the extracellular vesicles (EV) microfluidics herringbone chip (EVHB-Chip), coated with anti-VCAM-1 antibodies, for selective capture of VCAM-1+ cells and EC-EVs. Methods and Results: Engineered EA.hy926 endothelial cells overexpressing VCAM-1 (P < 0.001 versus control) showed increased binding to the VCAM-1- EVHB-Chip versus an IgG device. TNF-α-stimulated human umbilical cord vein endothelial cells (HUVECs) exhibited elevated VCAM-1 protein levels (P < 0.001) and preferential binding to the VCAM-1- EVHB-Chip versus the IgG device. HUVECs stimulated with TNF-α showed differential gene expression of intercellular adhesion molecule-1 (ICAM-1) (P < 0.001) and VCAM-1 (P < 0.001) by digital droplet PCR versus control cells. HUVEC-derived EC-EVs were positive for CD9, CD63, HSP70, and ALIX and had a modal size of 83.5 nm. Control and TNF-α-stimulated HUVEC-derived EC-EV cultures were captured on the VCAM-1- EVHB-Chip, demonstrating selective capture. VCAM-1+ EC-EV were significantly enriched for ICAM-1 (P < 0.001) mRNA transcripts. Conclusion: This study presents a novel approach using the EVHB-Chip, coated with anti-VCAM-1 antibodies and digital droplet PCR for the study of VCAM-1+ EC-EVs. Isolation of VCAM-1+ EC-EV from heterogeneous sources such as conditioned cell culture media holds promise for subsequent detailed characterization, and may facilitate the study of VCAM-1+ EC-EVs in cardiovascular and metabolic diseases, for disease monitoring and therapeutic insights.