One-Pot Chemoenzymatic Synthesis of Arsinothricin and the Mechanistic Insights into the Noncanonical Radical SAM Enzyme ArsL

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-12-19 DOI:10.1021/acscatal.4c04938
He Li, Fener Chen, Wei Ding, Qi Zhang
{"title":"One-Pot Chemoenzymatic Synthesis of Arsinothricin and the Mechanistic Insights into the Noncanonical Radical SAM Enzyme ArsL","authors":"He Li, Fener Chen, Wei Ding, Qi Zhang","doi":"10.1021/acscatal.4c04938","DOIUrl":null,"url":null,"abstract":"Arsinothricin (AST) is a broad-spectrum arsenic-containing antibiotic with promising pharmaceutical properties. In this study, we report the one-pot chemoenzymatic synthesis of AST starting from methylarsenate, a commonly used agricultural herbicide. Although a single point mutation in the C-terminal region of ArsL completely abolished its activity toward the natural substrate inorganic arsenite, this mutation unexpectedly enhanced its activity toward methylarsenate by over 50-fold, enabling subgram scale production of AST in a cell-free system. These findings offer valuable mechanistic insights into ArsL and highlight the significant potential of manipulating the radical SAM superfamily enzymes in synthetic applications.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"261 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04938","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Arsinothricin (AST) is a broad-spectrum arsenic-containing antibiotic with promising pharmaceutical properties. In this study, we report the one-pot chemoenzymatic synthesis of AST starting from methylarsenate, a commonly used agricultural herbicide. Although a single point mutation in the C-terminal region of ArsL completely abolished its activity toward the natural substrate inorganic arsenite, this mutation unexpectedly enhanced its activity toward methylarsenate by over 50-fold, enabling subgram scale production of AST in a cell-free system. These findings offer valuable mechanistic insights into ArsL and highlight the significant potential of manipulating the radical SAM superfamily enzymes in synthetic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arsinothricin (AST) 是一种广谱含砷抗生素,具有广阔的药用前景。在本研究中,我们报告了以常用的农用除草剂甲胂酸为原料,一步化学合成 AST 的过程。虽然 ArsL C 端区域的单点突变完全取消了其对天然底物无机亚砷酸盐的活性,但这一突变却意外地将其对甲砷酸盐的活性提高了 50 倍以上,从而实现了在无细胞系统中亚克规模生产 AST。这些发现为 ArsL 提供了宝贵的机理启示,并凸显了在合成应用中操纵自由基 SAM 超家族酶的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Highly Active and Stable Al-Doped NiFe Self-Supported Oxygen Evolution Reaction Electrode for Alkaline Water Electrolysis Bioinspired Molecular Catalyst for Photocatalytic Semihydrogenation of Acetylene with Water as a Proton Source Construction of Highly Active Fe5C2–FeCo Interfacial Sites for Oriented Synthesis of Light Olefins from CO2 Hydrogenation Dynamic Kinetic Reductive Grignard-Type Addition for the Construction of Axial and Central Chirality Hydrogen Evolution and Oxygen Reduction on OH/F-Terminated Titanium Nitride MXene Reveal the Role of the Surface Termination Group in Electrocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1