CusADi: A GPU Parallelization Framework for Symbolic Expressions and Optimal Control

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-05 DOI:10.1109/LRA.2024.3512254
Se Hwan Jeon;Seungwoo Hong;Ho Jae Lee;Charles Khazoom;Sangbae Kim
{"title":"CusADi: A GPU Parallelization Framework for Symbolic Expressions and Optimal Control","authors":"Se Hwan Jeon;Seungwoo Hong;Ho Jae Lee;Charles Khazoom;Sangbae Kim","doi":"10.1109/LRA.2024.3512254","DOIUrl":null,"url":null,"abstract":"The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of instances. In this work, we present \n<monospace>CusADi</monospace>\n, an extension of the \n<monospace>casadi</monospace>\n symbolic framework to support the parallelization of arbitrary closed-form expressions on GPUs with \n<monospace>CUDA</monospace>\n. We also formulate a closed-form approximation for solving general optimal control problems, enabling large-scale parallelization and evaluation of MPC controllers. Our results show a ten-fold speedup relative to similar MPC implementation on the CPU, and we demonstrate the use of \n<monospace>CusADi</monospace>\n for various applications, including parallel simulation, parameter sweeps, and policy training.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"899-906"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778410/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of instances. In this work, we present CusADi , an extension of the casadi symbolic framework to support the parallelization of arbitrary closed-form expressions on GPUs with CUDA . We also formulate a closed-form approximation for solving general optimal control problems, enabling large-scale parallelization and evaluation of MPC controllers. Our results show a ten-fold speedup relative to similar MPC implementation on the CPU, and we demonstrate the use of CusADi for various applications, including parallel simulation, parameter sweeps, and policy training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用于符号表达式和最优控制的GPU并行化框架
gpu提供的并行性在通过强化学习(RL)训练控制器方面具有显著的优势。然而,将基于模型的优化集成到此过程中仍然具有挑战性,因为在数千个实例中制定和解决优化问题非常复杂。在这项工作中,我们提出了CusADi, casadi符号框架的扩展,以支持CUDA gpu上任意封闭形式表达式的并行化。我们还为解决一般最优控制问题制定了一个封闭形式的近似,使MPC控制器的大规模并行化和评估成为可能。我们的结果显示,相对于在CPU上实现类似的MPC, CusADi的速度提高了10倍,并且我们演示了在各种应用程序中使用CusADi,包括并行模拟、参数扫描和策略训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Design and Actuation of a Multipole Ring Magnet for Navigating Endovascular Magnetic Instruments Online Modifications of High-Level Swarm Behaviors A Robust and Efficient Visual-Inertial SLAM Using Hybrid Point-Line Features Autonomous Robotic Bone Micro-Milling System With Automatic Calibration and 3D Surface Fitting Data-Efficient Constrained Robot Learning With Probabilistic Lagrangian Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1