OBMA: Scalable Route Lookups With Fast and Zero-Interrupt Updates

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-10-11 DOI:10.1109/TNET.2024.3446689
Chuwen Zhang;Yong Feng;Haoyu Song;Ying Wan;Wenquan Xu;Bin Liu
{"title":"OBMA: Scalable Route Lookups With Fast and Zero-Interrupt Updates","authors":"Chuwen Zhang;Yong Feng;Haoyu Song;Ying Wan;Wenquan Xu;Bin Liu","doi":"10.1109/TNET.2024.3446689","DOIUrl":null,"url":null,"abstract":"Software-based IP route lookup is a key component for packet forwarding in Software Defined Networks. Running lookup algorithms on commodity CPUs is flexible and scalable, which shows advantages on cost and power consumption over the hardware-based forwarding engines. However, dynamic network functions and services make route updates more frequent than ever. Existing algorithms often fall short of the incremental update requirements. In this paper, we propose the Overlay BitMap Algorithm (OBMA), which contains several variations, to support extraordinary update performance while maintaining the highest-in-class lookup speed and storage efficiency. Starting from the basic OBMA_B, we develop two variations with different tradeoffs for different application scenarios. OBMA_L supports faster lookups than OBMA_B at a small cost of update speed. OBMA_S achieves better storage efficiency than OBMA_B at a small cost of lookup throughput. We run our algorithms on a commodity CPU and evaluate them with real-world route tables and traces. The experiments show that OBMA achieves the lowest memory footprint, the highest update speed, and over 200 Mpps lookup throughput. Specifically, OBMA_S reduces the memory footprint to 3.98 bytes/prefix which is 25.33% smaller that of the state-of-the-art Poptrie; OBMA_L supports 252.02 Mpps lookup throughput with a single thread, and more than 600 Mpps with multiple parallel threads in a single CPU, significantly outperforming the state-of-the-art Poptrie and SAIL; OBMA_B supports updates at a rate of 14.58M updates/s which is 15 times faster than Poptrie. The tests show that the update process has little interference with the lookup process for OBMA, and achieves zero-interrupt to lookups with multiple threads.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4842-4854"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10714022/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Software-based IP route lookup is a key component for packet forwarding in Software Defined Networks. Running lookup algorithms on commodity CPUs is flexible and scalable, which shows advantages on cost and power consumption over the hardware-based forwarding engines. However, dynamic network functions and services make route updates more frequent than ever. Existing algorithms often fall short of the incremental update requirements. In this paper, we propose the Overlay BitMap Algorithm (OBMA), which contains several variations, to support extraordinary update performance while maintaining the highest-in-class lookup speed and storage efficiency. Starting from the basic OBMA_B, we develop two variations with different tradeoffs for different application scenarios. OBMA_L supports faster lookups than OBMA_B at a small cost of update speed. OBMA_S achieves better storage efficiency than OBMA_B at a small cost of lookup throughput. We run our algorithms on a commodity CPU and evaluate them with real-world route tables and traces. The experiments show that OBMA achieves the lowest memory footprint, the highest update speed, and over 200 Mpps lookup throughput. Specifically, OBMA_S reduces the memory footprint to 3.98 bytes/prefix which is 25.33% smaller that of the state-of-the-art Poptrie; OBMA_L supports 252.02 Mpps lookup throughput with a single thread, and more than 600 Mpps with multiple parallel threads in a single CPU, significantly outperforming the state-of-the-art Poptrie and SAIL; OBMA_B supports updates at a rate of 14.58M updates/s which is 15 times faster than Poptrie. The tests show that the update process has little interference with the lookup process for OBMA, and achieves zero-interrupt to lookups with multiple threads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1