Fine-Grained UHF RFID Localization for Robotics

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-09-24 DOI:10.1109/TNET.2024.3457696
Meng Jin;Shun Yao;Kexin Li;Xiaohua Tian;Xinbing Wang;Chenghu Zhou;Xinde Cao
{"title":"Fine-Grained UHF RFID Localization for Robotics","authors":"Meng Jin;Shun Yao;Kexin Li;Xiaohua Tian;Xinbing Wang;Chenghu Zhou;Xinde Cao","doi":"10.1109/TNET.2024.3457696","DOIUrl":null,"url":null,"abstract":"We in this paper present TiSee, an RFID-based sensing system that supports miniature robots to perform agile tasks in everyday environments. TiSee’s unique capability is that it uses a single arbitrarily-deployed antenna to locate a target with sub-cm-level accuracy and identify its orientation to within few degrees. Compared with existing solutions which rely on either antenna arrays or multiple RFID readers, TiSee is cheap, compact, and applicable to miniature robots. The idea of TiSee is to stick an RFID tag on the robot (or its gripper) and use it as a moving “antenna” to locate the tags on the target. The core of this design is a novel technique which can build a “channel” between two commercial RFID tags. Such an inter-tag channel is proved to be highly sensitive to the change in inter-tag distance and is resistant to multipath. By leveraging this channel and the mobility of the robot, we emulate an antenna array and use it for fine-grained localization and orientation estimation. Our experiments show that TiSee achieves a median accuracy of 9.5mm and 3.1° in 3D localization and orientation estimation. TiSee brings an eye-in-hand “camera” to miniature robots, supporting them to perform agile tasks in dark, cluttered, and occluded settings.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5247-5262"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10691945/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We in this paper present TiSee, an RFID-based sensing system that supports miniature robots to perform agile tasks in everyday environments. TiSee’s unique capability is that it uses a single arbitrarily-deployed antenna to locate a target with sub-cm-level accuracy and identify its orientation to within few degrees. Compared with existing solutions which rely on either antenna arrays or multiple RFID readers, TiSee is cheap, compact, and applicable to miniature robots. The idea of TiSee is to stick an RFID tag on the robot (or its gripper) and use it as a moving “antenna” to locate the tags on the target. The core of this design is a novel technique which can build a “channel” between two commercial RFID tags. Such an inter-tag channel is proved to be highly sensitive to the change in inter-tag distance and is resistant to multipath. By leveraging this channel and the mobility of the robot, we emulate an antenna array and use it for fine-grained localization and orientation estimation. Our experiments show that TiSee achieves a median accuracy of 9.5mm and 3.1° in 3D localization and orientation estimation. TiSee brings an eye-in-hand “camera” to miniature robots, supporting them to perform agile tasks in dark, cluttered, and occluded settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1